free full text journal articles: neuroscience
(skip the 30 most recent)


Advertisement


 

Google
 
Web www.neurotransmitter.net

Recent Articles in BMC Neuroscience

Hong S, Lee JE, Kim CY, Seong GJ
Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line.
BMC Neurosci. 2007;881.
BACKGROUND: Agmatine is an endogenous polyamine formed by the decarboxylation of L-arginine. We investigated the protective effects of agmatine against hypoxia-induced apoptosis of immortalized rat retinal ganglion cells (RGC-5). RGC-5 cells were cultured in a closed hypoxic chamber (5% O2) with or without agmatine. Cell viability was determined by lactate dehydrogenase (LDH) assay and apoptosis was examined by annexin V and caspase-3 assays. Expression and phosphorylation of mitogen-activated protein kinases (MAPKs; JNK, ERK p44/42, and p38) and nuclear factor-kappa B (NF-kappaB) were investigated by Western immunoblot analysis. The effects of agmatine were compared to those of brain-derived neurotrophic factor (BDNF), a well-known protective neurotrophin for retinal ganglion cells. RESULTS: After 48 hours of hypoxic culture, the LDH assay showed 52.3% cell loss, which was reduced to 25.6% and 30.1% when agmatine and BDNF were administered, respectively. This observed cell loss was due to apoptotic cell death, as established by annexin V and caspase-3 assays. Although total expression of MAPKs and NF-kappaB was not influenced by hypoxic injury, phosphorylation of these two proteins was increased. Agmatine reduced phosphorylation of JNK and NF-kappaB, while BDNF suppressed phosphorylation of ERK and p38. CONCLUSION: Our results show that agmatine has neuroprotective effects against hypoxia-induced retinal ganglion cell damage in RGC-5 cells and that its effects may act through the JNK and NF-kappaB signaling pathways. Our data suggest that agmatine may lead to a novel therapeutic strategy to reduce retinal ganglion cell injury related to hypoxia. [Abstract/Link to Full Text]

Hossain-Ibrahim MK, Rezajooi K, Stallcup WB, Lieberman AR, Anderson PN
Analysis of axonal regeneration in the central and peripheral nervous systems of the NG2-deficient mouse.
BMC Neurosci. 2007;880.
BACKGROUND: The chondroitin sulphate proteoglycan NG2 blocks neurite outgrowth in vitro and has been proposed as a major inhibitor of axonal regeneration in the CNS. Although a substantial body of evidence underpins this hypothesis, it is challenged by recent findings including strong expression of NG2 in regenerating peripheral nerve. RESULTS: We studied axonal regeneration in the PNS and CNS of genetically engineered mice that do not express NG2, and in sex and age matched wild-type controls. In the CNS, we used anterograde tracing with BDA to study corticospinal tract (CST) axons after spinal cord injury and transganglionic labelling with CT-HRP to trace ascending sensory dorsal column (DC) axons after DC lesions and a conditioning lesion of the sciatic nerve. Injury to these fibre tracts resulted in no difference between knockout and wild-type mice in the ability of CST axons or DC axons to enter or cross the lesion site. Similarly, after dorsal root injury (with conditioning lesion), most regenerating dorsal root axons failed to grow across the dorsal root entry zone in both transgenic and wild-type mice.Following sciatic nerve injuries, functional recovery was assessed by analysis of the toe-spreading reflex and cutaneous sensitivity to Von Frey hairs. Anatomical correlates of regeneration were assessed by: retrograde labelling of regenerating dorsal root ganglion (DRG) cells with DiAsp; immunostaining with PGP 9.5 to visualise sensory reinnervation of plantar hindpaws; electron microscopic analysis of regenerating axons in tibial and digital nerves; and by silver-cholinesterase histochemical study of motor end plate reinnervation. We also examined functional and anatomical correlates of regeneration after injury of the facial nerve by assessing the time taken for whisker movements and corneal reflexes to recover and by retrograde labelling of regenerated axons with Fluorogold and DiAsp. None of the anatomical or functional analyses revealed significant differences between wild-type and knockout mice. CONCLUSION: These findings show that NG2 is unlikely to be a major inhibitor of axonal regeneration after injury to the CNS, and, further, that NG2 is unlikely to be necessary for regeneration or functional recovery following peripheral nerve injury. [Abstract/Link to Full Text]

Bettini NL, Moores TS, Baxter B, Deuchars J, Parson SH
Dynamic remodelling of synapses can occur in the absence of the parent cell body.
BMC Neurosci. 2007;879.
BACKGROUND: Retraction of nerve terminals is a characteristic feature of development, injury and insult and may herald many neurodegenerative diseases. Although morphological events have been well characterized, we know relatively little about the nature of the underlying cellular machinery. Evidence suggests a strong local component in determining which neuronal branches and synapses are lost, but a greater understanding of this basic neurological process is required. Here we test the hypothesis that nerve terminals are semi-autonomous and able to rapidly respond to local stimuli in the absence of communication with their parent cell body. RESULTS: We used an isolated preparation consisting of distal peripheral nerve stumps, associated nerve terminals and post-synaptic muscle fibres, maintained in-vitro for up to 3 hrs. In this system synapses are intact but the presynaptic nerve terminal is disconnected from its cell soma. In control preparations synapses were stable for extended periods and did not undergo Wallerian degeneration. In contrast, addition of purines triggers rapid changes at synapses. Using fluorescence and electron microscopy we observe ultrastructural and gross morphological events consistent with nerve terminal retraction. We find no evidence of Wallerian or Wallerian-like degeneration in these preparations. Pharmacological experiments implicate pre-synaptic P2X7 receptor subunits as key mediators of these events. CONCLUSION: The data presented suggest; first that isolated nerve terminals are able to regulate connectivity independent of signals from the cell body, second that synapses exist in a dynamic state, poised to shift from stability to loss by activating intrinsic mechanisms and molecules, and third that local purines acting at purinergic receptors can trigger these events. A role for ATP receptors in this is not surprising since they are frequently activated during cellular injury, when adenosine tri-phosphate is released from damaged cells. Local control demands that the elements necessary to drive retraction are constitutively present. We hypothesize that pre-existing scaffolds of molecular motors and cytoskeletal proteins could provide the dynamism required to drive such structural changes in nerve terminals in the absence of the cell body. [Abstract/Link to Full Text]

Leino S, May PJ, Alku P, Liikkanen LA, Tiitinen H
The contribution of high frequencies to human brain activity underlying horizontal localization of natural spatial sounds.
BMC Neurosci. 2007;878.
BACKGROUND: In the field of auditory neuroscience, much research has focused on the neural processes underlying human sound localization. A recent magnetoencephalography (MEG) study investigated localization-related brain activity by measuring the N1m event-related response originating in the auditory cortex. It was found that the dynamic range of the right-hemispheric N1m response, defined as the mean difference in response magnitude between contralateral and ipsilateral stimulation, reflects cortical activity related to the discrimination of horizontal sound direction. Interestingly, the results also suggested that the presence of realistic spectral information within horizontally located spatial sounds resulted in a larger right-hemispheric N1m dynamic range. Spectral cues being predominant at high frequencies, the present study further investigated the issue by removing frequencies from the spatial stimuli with low-pass filtering. This resulted in a stepwise elimination of direction-specific spectral information. Interaural time and level differences were kept constant. The original, unfiltered stimuli were broadband noise signals presented from five frontal horizontal directions and binaurally recorded for eight human subjects with miniature microphones placed in each subject's ear canals. Stimuli were presented to the subjects during MEG registration and in a behavioral listening experiment. RESULTS: The dynamic range of the right-hemispheric N1m amplitude was not significantly affected even when all frequencies above 600 Hz were removed. The dynamic range of the left-hemispheric N1m response was significantly diminished by the removal of frequencies over 7.5 kHz. The subjects' behavioral sound direction discrimination was only affected by the removal of frequencies over 600 Hz. CONCLUSION: In accord with previous psychophysical findings, the current results indicate that frontal horizontal sound localization and related right-hemispheric cortical processes are insensitive to the presence of high-frequency spectral information. The previously described changes in localization-related brain activity, reflected in the enlarged N1m dynamic range elicited by natural spatial stimuli, can most likely be attributed to the processing of individualized spatial cues present already at relatively low frequencies. The left-hemispheric effect could be an indication of left-hemispheric processing of high-frequency sound information unrelated to sound localization. Taken together, these results provide converging evidence for a hemispheric asymmetry in sound localization. [Abstract/Link to Full Text]

Hamilton L, Franklin RJ, Jeffery ND
Development of a universal measure of quadrupedal forelimb-hindlimb coordination using digital motion capture and computerised analysis.
BMC Neurosci. 2007;877.
BACKGROUND: Clinical spinal cord injury in domestic dogs provides a model population in which to test the efficacy of putative therapeutic interventions for human spinal cord injury. To achieve this potential a robust method of functional analysis is required so that statistical comparison of numerical data derived from treated and control animals can be achieved. RESULTS: In this study we describe the use of digital motion capture equipment combined with mathematical analysis to derive a simple quantitative parameter - 'the mean diagonal coupling interval' - to describe coordination between forelimb and hindlimb movement. In normal dogs this parameter is independent of size, conformation, speed of walking or gait pattern. We show here that mean diagonal coupling interval is highly sensitive to alterations in forelimb-hindlimb coordination in dogs that have suffered spinal cord injury, and can be accurately quantified, but is unaffected by orthopaedic perturbations of gait. CONCLUSION: Mean diagonal coupling interval is an easily derived, highly robust measurement that provides an ideal method to compare the functional effect of therapeutic interventions after spinal cord injury in quadrupeds. [Abstract/Link to Full Text]

Hayase T
Chronologically overlapping occurrences of nicotine-induced anxiety- and depression-related behavioral symptoms: effects of anxiolytic and cannabinoid drugs.
BMC Neurosci. 2007;876.
BACKGROUND: Anxiety and depression are among the most frequently-observed psychiatric symptoms associated with nicotine (NC). In addition to the similarity to other addictive drugs, these NC-induced symptoms are characteristic in that the opposite behavioral effects, i.e. anxiolytic and antidepressant effects, which may reinforce the habitual use of NC, have also been reported. In the present study, the time course of anxiety- and depression-related behavioral alterations was examined in mice. Furthermore, based on the reported similarity in the mechanisms responsible for NC-induced anxiety- and depression-related symptoms, as well as the contribution of brain cannabinoid (CB) receptors to these behavioral symptoms, the effects of anxiolytics and CB receptor ligands (CBs) against these behavioral symptoms were investigated. RESULTS: Repeated subcutaneous NC treatments (0.3 mg/kg, 4 days), compared with a single treatment (0.5 mg/kg), caused both prolonged anxiogenic effects in the elevated plus-maze test, and prolonged depressive effects in the forced swimming test, even at 120 min time point after the last NC treatment. A transient anxiolytic preference for open arms was also observed in the elevated plus-maze test. Among the anxiolytics and CBs, the serotonin 1A (5-HT1A) antagonist WAY 100135 and the endogenous mixed CB agonist/antagonist virodhamine (VD), when administered intraperitoneally before each NC treatment, provided the strongest antagonistic effects against the anxiety-related symptoms. However, against the depression-related symptoms, only VD provided significant antagonistic effects in both single and repeated treatment groups. CONCLUSION: The present results support the presence of a chronological overlap of NC-induced anxiety- and depression-related behavioral symptoms, and the contribution of brain CB receptors to these behavioral symptoms. The repeated NC-induced prolongation of these behavioral symptoms and the early transient anxiolytic behavioral alterations support an increased possibility of the habitual use of NC. Furthermore, based on the antagonistic effects of VD, one can predict that the characteristic effects on brain CB receptors as a mixed CB agonist/antagonist contributed to its therapeutic effects as both an anxiolytic and an antidepressant. [Abstract/Link to Full Text]

Cheron G, Cebolla AM, De Saedeleer C, Bengoetxea A, Leurs F, Leroy A, Dan B
Pure phase-locking of beta/gamma oscillation contributes to the N30 frontal component of somatosensory evoked potentials.
BMC Neurosci. 2007;875.
BACKGROUND: Evoked potentials have been proposed to result from phase-locking of electroencephalographic (EEG) activities within specific frequency bands. However, the respective contribution of phasic activity and phase resetting of ongoing EEG oscillation remains largely debated. We here applied the EEGlab procedure in order to quantify the contribution of electroencephalographic oscillation in the generation of the frontal N30 component of the somatosensory evoked potentials (SEP) triggered by median nerve electrical stimulation at the wrist. Power spectrum and intertrial coherence analysis were performed on EEG recordings in relation to median nerve stimulation. RESULTS: The frontal N30 component was accompanied by a significant phase-locking of beta/gamma oscillation (25-35 Hz) and to a lesser extent of 80 Hz oscillation.After the selection in each subject of the trials for which the power spectrum amplitude remained unchanged, we found pure phase-locking of beta/gamma oscillation (25-35 Hz) peaking about 30 ms after the stimulation. Transition across trials from uniform to normal phase distribution revealed temporal phase reorganization of ongoing 30 Hz EEG oscillations in relation to stimulation. In a proportion of trials, this phase-locking was accompanied by a spectral power increase peaking in the 30 Hz frequency band. This corresponds to the complex situation of 'phase-locking with enhancement' in which the distinction between the contribution of phasic neural event versus EEG phase resetting is hazardous. CONCLUSION: The identification of a pure phase-locking in a large proportion of the SEP trials reinforces the contribution of the oscillatory model for the physiological correlates of the frontal N30. This may imply that ongoing EEG rhythms, such as beta/gamma oscillation, are involved in somatosensory information processing. [Abstract/Link to Full Text]

Tomé M, Siladzic E, Santos-Silva A, Barnett SC
Calponin is expressed by subpopulations of connective tissue cells but not olfactory ensheathing cells in the neonatal olfactory mucosa.
BMC Neurosci. 2007;874.
BACKGROUND: Debate has been ongoing on the relative merits of olfactory ensheathing cells (OECs) and Schwann cells as candidates for transplant-mediate repair of CNS lesions. Both glial cells exhibit similar molecular and cellular properties and to date there has been no antigenic marker identified that can clearly distinguish the two cell types. This inability to distinguish between the two cells types prevents confirmation of a controversial statement that cultures of OECs are contaminated with Schwann cells. Recently, proteomic analysis of foetal OECs and adult Schwann cells identified an actin-binding protein, calponin, as a specific marker for OECs. However, at the same time a recent report suggested that adult OECs do not express calponin. It was not clear if this discrepancy was due to methodology, as cells had to be treated with proteinase K to maximize calponin staining or developmental differences with only foetal/neonatal OECs expressing calponin. For this reason we have examined calponin expression in the peripheral olfactory system of embryonic and neonatal rats in vivo and from cells in vitro to assess if calponin is expressed in a developmental manner. RESULTS: In this study we show that: i) proteinase K pretreatment had no effect on calponin staining in both OECs and Schwann cells. ii) calponin immunoreactivity was not expressed by embryonic or neonatal OECs in vitro and in vivo although connective tissue from the olfactory mucosa was strongly positive in neonatal rats but not embryonic rats, iii) calponin expression in the olfactory mucosa was heterogeneous, defining subpopulations of connective tissue cells iv) using functional confrontation assays between OECs or Schwann cells with astrocytes, calponin was expressed heterogeneously by astrocytes. CONCLUSION: It is concluded that calponin is heterogeneously expressed by neonatal mucosal connective tissue but not expressed by neonatal OECs, embryonic OECs, and neonatal Schwann cells. Furthermore, we propose that calponin is not a specific marker for OECs generated from any developmental age. [Abstract/Link to Full Text]

Cao X, Wei Z, Gabriel GG, Li X, Mousseau DD
Calcium-sensitive regulation of monoamine oxidase-A contributes to the production of peroxyradicals in hippocampal cultures: implications for Alzheimer disease-related pathology.
BMC Neurosci. 2007;873.
BACKGROUND: Calcium (Ca2+) has recently been shown to selectively increase the activity of monoamine oxidase-A (MAO-A), a mitochondria-bound enzyme that generates peroxyradicals as a natural by-product of the deamination of neurotransmitters such as serotonin. It has also been suggested that increased intracellular free Ca2+ levels as well as MAO-A may be contributing to the oxidative stress associated with Alzheimer disease (AD). RESULTS: Incubation with Ca2+ selectively increases MAO-A enzymatic activity in protein extracts from mouse hippocampal HT-22 cell cultures. Treatment of HT-22 cultures with the Ca2+ ionophore A23187 also increases MAO-A activity, whereas overexpression of calbindin-D28K (CB-28K), a Ca2+-binding protein in brain that is greatly reduced in AD, decreases MAO-A activity. The effects of A23187 and CB-28K are both independent of any change in MAO-A protein or gene expression. The toxicity (via production of peroxyradicals and/or chromatin condensation) associated with either A23187 or the AD-related beta-amyloid peptide, which also increases free intracellular Ca2+, is attenuated by MAO-A inhibition in HT-22 cells as well as in primary hippocampal cultures. CONCLUSION: These data suggest that increases in intracellular Ca2+ availability could contribute to a MAO-A-mediated mechanism with a role in AD-related oxidative stress. [Abstract/Link to Full Text]

Madsen LB, Thomsen B, Larsen K, Bendixen C, Holm IE, Fredholm M, Jřrgensen AL, Nielsen AL
Molecular characterization and temporal expression profiling of presenilins in the developing porcine brain.
BMC Neurosci. 2007;872.
BACKGROUND: The transmembrane presenilin (PSEN) proteins, PSEN1 and PSEN2, have been proposed to be the catalytic components of the gamma-secretase protein complex, which is an intramembranous multimeric protease involved in development, cell regulatory processes, and neurodegeneration in Alzheimer's disease. Here we describe the sequencing, chromosomal mapping, and polymorphism analysis of PSEN1 and PSEN2 in the domestic pig (Sus scrofa domesticus). RESULTS: The porcine presenilin proteins showed a high degree of homology over their entire sequences to the PSENs from mouse, bovine, and human. PSEN1 and PSEN2 transcription was examined during prenatal development of the brain stem, hippocampus, cortex, basal ganglia, and cerebellum at embryonic days 60, 80, 100, and 114, which revealed distinct temporal- and tissue-specific expression profiles. Furthermore, immunohistochemical analysis of PSEN1 and PSEN2 showed similar localization of the proteins predominantly in neuronal cells in all examined brain areas. CONCLUSION: The data provide evidence for structural and functional conservation of PSENs in mammalian lineages, and may suggest that the high sequence similarity and colocalization of PSEN1 and PSEN2 in brain tissue reflect a certain degree of functional redundancy. The data show that pigs may provide a new animal model for detailed analysis of the developmental functions of the PSENs. [Abstract/Link to Full Text]

Kramer KM, Yoshida S, Papademetriou E, Cushing BS
The organizational effects of oxytocin on the central expression of estrogen receptor alpha and oxytocin in adulthood.
BMC Neurosci. 2007;871.
BACKGROUND: Previous studies have demonstrated that neonatal manipulation of oxytocin (OT) has effects on the expression of estrogen receptor alpha (ER alpha) and the central production of oxytocin observed in juveniles (at weaning, 21 days of age). The goal of this study was to determine whether the effects of neonatal manipulation of OT last into adulthood, and if the effects differ from those observed during the early postnatal period. On the first day of life, prairie voles (Microtus ochrogaster) received one of three doses of OT (High, 3 microg; Med, 0.3 microg; Low, 0.03 microg), an OT antagonist, or isotonic saline. Another group was handled, but not injected. Then as adults, brains were collected, sectioned, and stained for ER alpha or OT using immunocytochemistry. RESULTS: In females, treatment with OT increased the expression of ER alpha immunoreactivity in the ventral lateral septum (0.03 microg) and the ventromedial nucleus of the hypothalamus and central amygdala (0.3 microg). In males, OT antagonist increased ER alpha expression in the bed nucleus of the stria terminalis. There was no apparent effect of OT on the number of cells producing OT in the paraventricular nucleus of the hypothalamus. CONCLUSION: The current results suggest that neonatal manipulation of OT has long-term organizational effects on the expression of ER alpha in both males and females. The lack of effect on OT neurons in the paraventricular nucleus suggests that some developmental effects of OT previously observed in weanlings do not persist into adulthood. Developmental effects of OT on ER alpha patterns were sexually dimorphic, dose-dependent, and site-specific. [Abstract/Link to Full Text]

Weigelt S, Singer W, Muckli L
Separate cortical stages in amodal completion revealed by functional magnetic resonance adaptation.
BMC Neurosci. 2007;870.
BACKGROUND: Objects in our environment are often partly occluded, yet we effortlessly perceive them as whole and complete. This phenomenon is called visual amodal completion. Psychophysical investigations suggest that the process of completion starts from a representation of the (visible) physical features of the stimulus and ends with a completed representation of the stimulus. The goal of our study was to investigate both stages of the completion process by localizing both brain regions involved in processing the physical features of the stimulus as well as brain regions representing the completed stimulus. RESULTS: Using fMRI adaptation we reveal clearly distinct regions in the visual cortex of humans involved in processing of amodal completion: early visual cortex - presumably V1 -processes the local contour information of the stimulus whereas regions in the inferior temporal cortex represent the completed shape. Furthermore, our data suggest that at the level of inferior temporal cortex information regarding the original local contour information is not preserved but replaced by the representation of the amodally completed percept. CONCLUSION: These findings provide neuroimaging evidence for a multiple step theory of amodal completion and further insights into the neuronal correlates of visual perception. [Abstract/Link to Full Text]

Touret M, Parrot S, Denoroy L, Belin MF, Didier-Bazes M
Glutamatergic alterations in the cortex of genetic absence epilepsy rats.
BMC Neurosci. 2007;869.
BACKGROUND: In absence epilepsy, the neuronal hyper-excitation and hyper-synchronization, which induce spike and wave discharges in a cortico-thalamic loop are suspected to be due to an imbalance between GABA and glutamate (GLU) neurotransmission. In order to elucidate the role played by GLU in disease outcome, we measured cortical and thalamic extracellular levels of GLU and GABA. We used an in vivo quantitative microdialysis approach (no-net-flux method) in an animal model of absence epilepsy (GAERS). In addition, by infusing labelled glutamate through the microdialysis probe, we studied in vivo glutamate uptake in the cortex and thalamus in GAERS and non-epileptic control (NEC) rats. Expression of the vesicular glutamate transporters VGLUT1 and VGLUT2 and a synaptic component, synaptophysin, was also measured. RESULTS: Although extracellular concentrations of GABA and GLU in the cortex and thalamus were not significantly different between GAERS and NEC rats, cortical GLU uptake was significantly decreased in unrestrained awake GAERS. Expression of VGLUT2 and synaptophysin was increased in the cortex of GAERS compared to NEC rats, but no changes were observed in the thalamus. CONCLUSION: The specific decrease in GLU uptake in the cortex of GAERS linked to synaptic changes suggests impairment of the glutamatergic terminal network. These data support the idea that a change in glutamatergic neurotransmission in the cortex could contribute to hyperexcitability in absence epilepsy. [Abstract/Link to Full Text]

Kopp B, Tabeling S, Moschner C, Wessel K
Temporal dynamics of selective attention and conflict resolution during cross-dimensional go-nogo decisions.
BMC Neurosci. 2007;868.
BACKGROUND: Decision-making is a fundamental capacity which is crucial to many higher-order psychological functions. We recorded event-related potentials (ERPs) during a visual target-identification task that required go-nogo choices. Targets were identified on the basis of cross-dimensional conjunctions of particular colors and forms. Color discriminability was manipulated in three conditions to determine the effects of color distinctiveness on component processes of decision-making. RESULTS: Target identification was accompanied by the emergence of prefrontal P2a and P3b. Selection negativity (SN) revealed that target-compatible features captured attention more than target-incompatible features, suggesting that intra-dimensional attentional capture was goal-contingent. No changes of cross-dimensional selection priorities were measurable when color discriminability was altered. Peak latencies of the color-related SN provided a chronometric measure of the duration of attention-related neural processing. ERPs recorded over the frontocentral scalp (N2c, P3a) revealed that color-overlap distractors, more than form-overlap distractors, required additional late selection. The need for additional response selection induced by color-overlap distractors was severely reduced when color discriminability decreased. CONCLUSION: We propose a simple model of cross-dimensional perceptual decision-making. The temporal synchrony of separate color-related and form-related choices determines whether or not distractor processing includes post-perceptual stages. ERP measures contribute to a comprehensive explanation of the temporal dynamics of component processes of perceptual decision-making. [Abstract/Link to Full Text]

Jin J, Davis J, Zhu D, Kashima DT, Leroueil M, Pan C, Montine KS, Zhang J
Identification of novel proteins affected by rotenone in mitochondria of dopaminergic cells.
BMC Neurosci. 2007;867.
BACKGROUND: Many studies have shown that mitochondrial dysfunction, complex I inhibition in particular, is involved in the pathogenesis of Parkinson's disease (PD). Rotenone, a specific inhibitor of mitochondrial complex I, has been shown to produce neurodegeneration in rats as well as in many cellular models that closely resemble PD. However, the mechanisms through which complex I dysfunction might produce neurotoxicity are as yet unknown. A comprehensive analysis of the mitochondrial protein expression profile affected by rotenone can provide important insight into the role of mitochondrial dysfunction in PD. RESULTS: Here, we present our findings using a recently developed proteomic technology called SILAC (stable isotope labeling by amino acids in cell culture) combined with polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectrometry to compare the mitochondrial protein profiles of MES cells (a dopaminergic cell line) exposed to rotenone versus control. We identified 1722 proteins, 950 of which are already designated as mitochondrial proteins based on database search. Among these 950 mitochondrial proteins, 110 displayed significant changes in relative abundance after rotenone treatment. Five of these selected proteins were further validated for their cellular location and/or treatment effect of rotenone. Among them, two were confirmed by confocal microscopy for mitochondrial localization and three were confirmed by Western blotting (WB) for their regulation by rotenone. CONCLUSION: Our findings represent the first report of these mitochondrial proteins affected by rotenone; further characterization of these proteins may shed more light on PD pathogenesis. [Abstract/Link to Full Text]

Himmelbach M, Erb M, Karnath HO
Activation of superior colliculi in humans during visual exploration.
BMC Neurosci. 2007;866.
BACKGROUND: Visual, oculomotor, and - recently - cognitive functions of the superior colliculi (SC) have been documented in detail in non-human primates in the past. Evidence for corresponding functions of the SC in humans is still rare. We examined activity changes in the human tectum and the lateral geniculate nuclei (LGN) in a visual search task using functional magnetic resonance imaging (fMRI) and anatomically defined regions of interest (ROI). Healthy subjects conducted a free visual search task and two voluntary eye movement tasks with and without irrelevant visual distracters. Blood oxygen level dependent (BOLD) signals in the SC were compared to activity in the inferior colliculi (IC) and LGN. RESULTS: Neural activity increased during free exploration only in the SC in comparison to both control tasks. Saccade frequency did not exert a significant effect on BOLD signal changes. No corresponding differences between experimental tasks were found in the IC or the LGN. However, while the IC revealed no signal increase from the baseline, BOLD signal changes at the LGN were consistently positive in all experimental conditions. CONCLUSION: Our data demonstrate the involvement of the SC in a visual search task. In contrast to the results of previous studies, signal changes could not be seen to be driven by either visual stimulation or oculomotor control on their own. Further, we can exclude the influence of any nearby neural structures (e.g. pulvinar, tegmentum) or of typical artefacts at the brainstem on the observed signal changes at the SC. Corresponding to findings in non-human primates, our data support a dependency of SC activity on functions beyond oculomotor control and visual processing. [Abstract/Link to Full Text]

Tinette S, Zhang L, Garnier A, Engler G, Tares S, Robichon A
Exploratory behaviour in NO-dependent cyclase mutants of Drosophila shows defects in coincident neuronal signalling.
BMC Neurosci. 2007;865.
BACKGROUND: Drosophila flies explore the environment very efficiently in order to colonize it. They explore collectively, not individually, so that when a few land on a food spot, they attract the others by signs. This behaviour leads to aggregation of individuals and optimizes the screening of mates and egg-laying on the most favourable food spots. RESULTS: Flies perform cycles of exploration/aggregation depending on the resources of the environment. This behavioural ecology constitutes an excellent model for analyzing simultaneous processing of neurosensory information. We reasoned that the decision of flies to land somewhere in order to achieve aggregation is based on simultaneous integration of signals (visual, olfactory, acoustic) during their flight. On the basis of what flies do in nature, we designed laboratory tests to analyze the phenomenon of neuronal coincidence. We screened many mutants of genes involved in neuronal metabolism and the synaptic machinery. CONCLUSION: Mutants of NO-dependent cyclase show a specifically-marked behaviour phenotype, but on the other hand they are associated with moderate biochemical defects. We show that these mutants present errors in integrative and/or coincident processing of signals, which are not reducible to the functions of the peripheral sensory cells. [Abstract/Link to Full Text]

Hansen A
Olfactory and solitary chemosensory cells: two different chemosensory systems in the nasal cavity of the American alligator, Alligator mississippiensis.
BMC Neurosci. 2007;864.
BACKGROUND: The nasal cavity of all vertebrates houses multiple chemosensors, either innervated by the Ist (olfactory) or the Vth (trigeminal) cranial nerve. Various types of receptor cells are present, either segregated in different compartments (e.g. in rodents) or mingled in one epithelium (e.g. fish). In addition, solitary chemosensory cells have been reported for several species. Alligators which seek their prey both above and under water have only one nasal compartment. Information about their olfactory epithelium is limited. Since alligators seem to detect both volatile and water-soluble odour cues, I tested whether different sensory cell types are present in the olfactory epithelium. RESULTS: Electron microscopy and immunocytochemistry were used to examine the sensory epithelium of the nasal cavity of the American alligator. Almost the entire nasal cavity is lined with olfactory (sensory) epithelium. Two types of olfactory sensory neurons are present. Both types bear cilia as well as microvilli at their apical endings and express the typical markers for olfactory neurons. The density of these olfactory neurons varies along the nasal cavity. In addition, solitary chemosensory cells innervated by trigeminal nerve fibres, are intermingled with olfactory sensory neurons. Solitary chemosensory cells express components of the PLC-transduction cascade found in solitary chemosensory cells in rodents. CONCLUSION: The nasal cavity of the American alligator contains two different chemosensory systems incorporated in the same sensory epithelium: the olfactory system proper and solitary chemosensory cells. The olfactory system contains two morphological distinct types of ciliated olfactory receptor neurons. [Abstract/Link to Full Text]

Erdmann G, Schütz G, Berger S
Inducible gene inactivation in neurons of the adult mouse forebrain.
BMC Neurosci. 2007;863.
BACKGROUND: The analysis of the role of genes in important brain functions like learning, memory and synaptic plasticity requires gene inactivation at the adult stage to exclude developmental effects, adaptive changes or even lethality. In order to achieve temporally controlled somatic mutagenesis, the Cre/loxP-recombination system has been complemented with the tamoxifen-inducible fusion protein consisting of Cre recombinase and the mutated ligand binding domain of the human estrogen receptor (CreERT2). To induce recombination of conditional alleles in neurons of the adult forebrain, we generated a bacterial artificial chromosome-derived transgene expressing the CreERT2 fusion protein under control of the regulatory elements of the CaMKIIalpha gene (CaMKCreERT2 transgene). RESULTS: We established three mouse lines harboring one, two and four copies of the CaMKCreERT2 transgene. The CaMKCreERT2 transgene displayed reliable and copy number-dependent expression of Cre recombinase specifically in neurons of the adult forebrain. Using Cre reporter mice we show very low background activity of the transgene in absence of the ligand and efficient induction of recombination upon tamoxifen treatment in all three lines. In addition, we demonstrate in mice harboring two conditional glucocorticoid receptor (GR) alleles and the CaMKCreERT2 transgene spatially restricted loss of GR protein expression in neurons of the adult forebrain upon tamoxifen treatment. CONCLUSION: This is to our knowledge the first approach allowing highly efficient inducible gene inactivation in neurons of the adult mouse forebrain. This new approach will be a useful tool to dissect the function of specific genes in the adult forebrain. Effects of gene inactivation on pre- and postnatal brain development and compensatory mechanisms elicited by an early onset of gene inactivation can now be excluded. [Abstract/Link to Full Text]

Teismann IK, Steinstraeter O, Stoeckigt K, Suntrup S, Wollbrink A, Pantev C, Dziewas R
Functional oropharyngeal sensory disruption interferes with the cortical control of swallowing.
BMC Neurosci. 2007;862.
BACKGROUND: Sensory input is crucial to the initiation and modulation of swallowing. From a clinical point of view, oropharyngeal sensory deficits have been shown to be an important cause of dysphagia and aspiration in stroke patients. In the present study we therefore investigated effects of functional oropharyngeal disruption on the cortical control of swallowing. We employed whole-head MEG to study cortical activity during self-paced volitional swallowing with and without topical oropharyngeal anesthesia in ten healthy subjects. A simple swallowing screening-test confirmed that anesthesia caused swallowing difficulties with decreased swallowing speed and reduced volume per swallow in all subjects investigated. Data were analyzed by means of synthetic aperture magnetometry (SAM) and the group analysis of the individual SAM data was performed using a permutation test. RESULTS: The analysis of normal swallowing revealed bilateral activation of the mid-lateral primary sensorimotor cortex. Oropharyngeal anesthesia led to a pronounced decrease of both sensory and motor activation. CONCLUSION: Our results suggest that a short-term decrease in oropharyngeal sensory input impedes the cortical control of swallowing. Apart from diminished sensory activity, a reduced activation of the primary motor cortex was found. These findings facilitate our understanding of the pathophysiology of dysphagia. [Abstract/Link to Full Text]

Klein R, Brown D, Turnley AM
Phenoxodiol protects against Cisplatin induced neurite toxicity in a PC-12 cell model.
BMC Neurosci. 2007;861.
BACKGROUND: Many commonly used chemotherapeutic agents, such as Cisplatin, are restricted in their potential anti-neoplastic effectiveness by their side effects, with one of the most problematic being induction of peripheral neuropathy. Although a number of different neurotrophic, neuroprotective or anti-oxidant treatments have been tried in order to prevent or treat the neuropathies, to date they have met with limited success. Phenoxodiol is a new chemotherapeutic agent that has anti-proliferative and apoptotic effects on a range of cancer cells. PC12 cells are a commonly used neuronal cell model for examination of neurite outgrowth. In this study we examined whether phenoxodiol could protect against Cisplatin induced neurite inhibition in PC12 cells as an indication of the potential to protect against neuropathy. RESULTS: Using the PC12 neuronal cell line, concentrations of Cisplatin were chosen that induced moderate or strong neurite toxicity within 24 hrs but were not cytotoxic. The effect of Phenoxodiol on Cisplatin induced neurite toxicity was assessed by measurement of neurite outgrowth. Addition of phenoxodiol at 100 nM or 1 microM showed no cytotoxicity and blocked the Cisplatin induced neurite toxicity, while phenoxodiol at 10 microM was cytotoxic and enhanced neurite toxicity of Cisplatin. When Cisplatin was added for 24 hrs, then washed out and the cells allowed to recover for 48 hrs, neurite outgrowth was not restored and addition of phenoxodiol did not further promote recovery or restore the Cisplatin treated cells. CONCLUSION: In addition to its potential as a chemotherapeutic agent Phenoxodiol may thus also have the potential to be used in conjunction with Cisplatin chemotherapy to prevent induction of neuropathy. [Abstract/Link to Full Text]

Papatheodoropoulos C, Sotiriou E, Kotzadimitriou D, Drimala P
At clinically relevant concentrations the anaesthetic/amnesic thiopental but not the anticonvulsant phenobarbital interferes with hippocampal sharp wave-ripple complexes.
BMC Neurosci. 2007;860.
BACKGROUND: Many sedative agents, including anesthetics, produce explicit memory impairment by largely unknown mechanisms. Sharp-wave ripple (SPW-R) complexes are network activity thought to represent the neuronal substrate for information transfer from the hippocampal to neocortical circuits, contributing to the explicit memory consolidation. In this study we examined and compared the actions of two barbiturates with distinct amnesic actions, the general anesthetic thiopental and the anticonvulsant phenobarbital, on in vitro SPW-R activity. RESULTS: Using an in vitro model of SPW-R activity we found that thiopental (50-200 muM) significantly and concentration-dependently reduced the incidence of SPW-R events (it increased the inter-event period by 70-430 %). At the concentration of 25 muM, which clinically produces mild sedation and explicit memory impairment, thiopental significantly reduced the quantity of ripple oscillation (it reduced the number of ripples and the duration of ripple episodes by 20 +/- 5%, n = 12, P < 0.01), and suppressed the rhythmicity of SPWs by 43 +/- 15% (n = 6, P < 0.05). The drug disrupted the synchrony of SPWs within the CA1 region at 50 muM (by 19 +/- 12%; n = 5, P < 0.05). Similar effects of thiopental were observed at higher concentrations. Thiopental did not affect the frequency of ripple oscillation at any of the concentrations tested (10-200 muM). Furthermore, the drug significantly prolonged single SPWs at concentrations >/=50 muM (it increased the half-width and the duration of SPWs by 35-90 %). Thiopental did not affect evoked excitatory synaptic potentials and its results on SPW-R complexes were also observed under blockade of NMDA receptors. Phenobarbital significantly accelerated SPWs at 50 and 100 muM whereas it reduced their rate at 200 and 400 muM. Furthermore, it significantly prolonged SPWs, reduced their synchrony and reduced the quantity of ripples only at the clinically very high concentration of 400 muM, reported to affect memory. CONCLUSION: We hypothesize that thiopental, by interfering with SPW-R activity, through enhancement of the GABAA receptor-mediated transmission, affects memory processes which involve hippocampal circuit activation. The quantity but not the frequency of ripple oscillation was affected by the drug. [Abstract/Link to Full Text]

Magalhăes TR, Palmer J, Tomancak P, Pollard KS
Transcriptional control in embryonic Drosophila midline guidance assessed through a whole genome approach.
BMC Neurosci. 2007;859.
BACKGROUND: During the development of the Drosophila central nervous system the process of midline crossing is orchestrated by a number of guidance receptors and ligands. Many key axon guidance molecules have been identified in both invertebrates and vertebrates, but the transcriptional regulation of growth cone guidance remains largely unknown. It is established that translational regulation plays a role in midline crossing, and there are indications that transcriptional regulation is also involved. To investigate this issue, we conducted a genome-wide study of transcription in Drosophila embryos using wild type and a number of well-characterized Drosophila guidance mutants and transgenics. We also analyzed a previously published microarray time course of Drosophila embryonic development with an axon guidance focus. RESULTS: Using hopach, a novel clustering method which is well suited to microarray data analysis, we identified groups of genes with similar expression patterns across guidance mutants and transgenics. We then systematically characterized the resulting clusters with respect to their relevance to axon guidance using two complementary controlled vocabularies: the Gene Ontology (GO) and anatomical annotations of the Atlas of Pattern of Gene Expression (APoGE) in situ hybridization database. The analysis indicates that regulation of gene expression does play a role in the process of axon guidance in Drosophila. We also find a strong link between axon guidance and hemocyte migration, a result that agrees with mounting evidence that axon guidance molecules are co-opted in vertebrate vascularization. Cell cyclin activity in the context of axon guidance is also suggested from our array data. RNA and protein expression patterns of cell cyclins in axon guidance mutants and transgenics support this possible link. CONCLUSION: This study provides important insights into the regulation of axon guidance in vivo. [Abstract/Link to Full Text]

Kalisch T, Tegenthoff M, Dinse HR
Differential effects of synchronous and asynchronous multifinger coactivation on human tactile performance.
BMC Neurosci. 2007;858.
BACKGROUND: Repeated execution of a tactile task enhances task performance. In the present study we sought to improve tactile performance with unattended activation-based learning processes (i.e., focused stimulation of dermal receptors evoking neural coactivation (CA)). Previous studies show that the application of CA to a single finger reduced the stationary two-point discrimination threshold and significantly increased tactile acuity. These changes were accompanied by an expansion of the cortical finger representation in primary somatosensory cortex (SI). Here we investigated the effect of different types of multifinger CA on the tactile performance of each finger of the right hand. RESULTS: Synchronous and asynchronous CA was applied to all fingers of a subject's dominant hand. We evaluated changes in absolute touch thresholds, static two-point discrimination thresholds, and mislocalization of tactile stimuli to the fingertips. After synchronous CA, tactile acuity improved (i.e., discrimination thresholds decreased) and the frequency of mislocalization of tactile stimuli changed from directly neighboring fingers to more distant fingers. On the other hand, asynchronous CA did not significant improve tactile acuity. In fact, there was evidence of impaired tactile acuity. Multifinger CA with synchronous or asynchronous stimulation did not significantly alter absolute touch thresholds. CONCLUSION: Our results demonstrate that it is possible to extend tactile CA to all fingers of a hand. The observed changes in mislocalization of tactile stimuli after synchronous CA indicate changes in the topography of the cortical hand representation. Although single-finger CA has been shown to improve tactile acuity, asynchronous CA of all fingers of the hand had the opposite effect, suggesting the need for synchrony in multifinger CA for improving tactile acuity. [Abstract/Link to Full Text]

Eder A, Bading H
Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients.
BMC Neurosci. 2007;857.
BACKGROUND: In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. RESULTS: Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. CONCLUSION: Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events. [Abstract/Link to Full Text]

Henry MA, Freking AR, Johnson LR, Levinson SR
Sodium channel Nav1.6 accumulates at the site of infraorbital nerve injury.
BMC Neurosci. 2007;856.
BACKGROUND: Sodium channel (NaCh) expressions change following nerve and inflammatory lesions and this change may contribute to the activation of pain pathways. In a previous study we found a dramatic increase in the size and density of NaCh accumulations, and a remodeling of NaChs at intact and altered myelinated sites at a location just proximal to a combined partial axotomy and chromic suture lesion of the rat infraorbital nerve (ION) with the use of an antibody that identifies all NaCh isoforms. Here we evaluate the contribution of the major nodal NaCh isoform, Nav1.6, to this remodeling of NaChs following the same lesion. Sections of the ION from normal and ION lesioned subjects were double-stained with antibodies against Nav1.6 and caspr (contactin-associated protein; a paranodal protein to identify nodes of Ranvier) and then z-series of optically sectioned images were captured with a confocal microscope. ImageJ (NIH) software was used to quantify the average size and density of Nav1.6 accumulations, while additional single fiber analyses measured the axial length of the nodal gap, and the immunofluorescence intensity of Nav1.6 in nodes and of caspr in the paranodal region. RESULTS: The findings showed a significant increase in the average size and density of Nav1.6 accumulations in lesioned IONs when compared to normal IONs. The results of the single fiber analyses in caspr-identified typical nodes showed an increased axial length of the nodal gap, an increased immunofluorescence intensity of nodal Nav1.6 and a decreased immunofluorescence intensity of paranodal caspr in lesioned IONs when compared to normal IONs. In the lesioned IONs, Nav1.6 accumulations were also seen in association with altered caspr-relationships, such as heminodes. CONCLUSION: The results of the present study identify Nav1.6 as one isoform involved in the augmentation and remodeling of NaChs at nodal sites following a combined partial axotomy and chromic suture ION lesion. The augmentation of Nav1.6 may result from an alteration in axon-Schwann cell signaling mechanisms as suggested by changes in caspr expression. The changes identified in this study suggest that the participation of Nav1.6 should be considered when examining changes in the excitability of myelinated axons in neuropathic pain models. [Abstract/Link to Full Text]


CNS*2007. Abstracts of the 16th Annual Computational Neuroscience Meeting, Toronto, Canada, 7-12 July 2007.
BMC Neurosci. 2007;8 Suppl 2S1-P207. [Abstract/Link to Full Text]

Li R, Huang FS, Abbas AK, Wigström H
Role of NMDA receptor subtypes in different forms of NMDA-dependent synaptic plasticity.
BMC Neurosci. 2007;855.
BACKGROUND: The involvement of different NMDA receptor (NMDAR) subunits has been implicated in several forms of synaptic plasticity. However, it is still controversial to what extent the involvement is specific, and little is known about the role of NMDAR subunits in certain "non-conventional" forms of plasticity. In this study we used subunit-specific blockers to test the roles of NR2A- and NR2B-containing NMDARs in a type of chemical long-term depression (LTD) induced by brief bath application of the NMDAR agonist NMDA to hippocampal slices from 12-18 days old rats. For comparison, we also examined other forms of plasticity, including a "slow LTD" induced by 0.1 Hz stimulation under low Mg2+ conditions as well as long-term potentiation (LTP). RESULTS: A blocker of NR2A-containing NMDARs, NVP-AAM077 (NVP), substantially reduced the two forms of studied depression whereas blockers of NR2B-containing NMDARs, Ro25-6981 (Ro) or Ifenprodil (Ife), had no significant effect on them. LTP appeared to be more sensitive as it was fully blocked by NVP and partially blocked by Ro or Ife. However, the blocking effects of NVP could be counteracted by general amplification of NMDA responses by lowering Mg2+ concentration in the perfusion solution. Applying NVP or Ro/Ife on isolated NMDA-EPSPs recorded in low Mg2+ solution reduced responses to about 70% and 20% of initial size, respectively, whereas coapplication of both blockers almost completely abolished the responses. Additionally, NMDA application caused depotentiation of a pathway with prior tetanus-induced LTP, and NVP but not Ro/Ife substantially prevented that depotentiation as well as the chemical LTD of the control pathway. A second tetanus on the LTP pathway induced repotentiation which was fully blocked by NVP but partially blocked by Ro/Ife. CONCLUSION: All of these results on hippocampal slices from young rats can be explained by a simple model, in which NR2A subunits dominate over NR2B subunits with respect to both plasticity and NMDAR-mediated responses. The model suggests that Ca2+ influx into the postsynaptic spine via different subtypes of NMDARs makes up a "final common pathway", controlling synaptic plasticity by its magnitude and temporal pattern regardless of the source. [Abstract/Link to Full Text]

Kukar T, Prescott S, Eriksen JL, Holloway V, Murphy MP, Koo EH, Golde TE, Nicolle MM
Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice.
BMC Neurosci. 2007;854.
BACKGROUND: Long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced incidence of Alzheimer's disease (AD). We and others have shown that certain NSAIDs reduce secretion of Abeta42 in cell culture and animal models, and that the effect of NSAIDs on Abeta42 is independent of the inhibition of cyclooxygenase by these compounds. Since Abeta42 is hypothesized to be the initiating pathologic molecule in AD, the ability of these compounds to lower Abeta42 selectively may be associated with their protective effect. We have previously identified R-flurbiprofen (tarenflurbil) as a selective Abeta42 lowering agent with greatly reduced cyclooxygenase activity that shows promise for testing this hypothesis. In this study we report the effect of chronic R-flurbiprofen treatment on cognition and Abeta loads in Tg2576 APP mice. RESULTS: A four-month preventative treatment regimen with R-flurbiprofen (10 mg/kg/day) was administered to young Tg2576 mice prior to robust plaque or Abeta pathology. This treatment regimen improved spatial learning as assessed by the Morris water maze, indicated by an increased spatial bias during the third probe trial and an increased utilization of a place strategy to solve the water maze. These results are consistent with an improvement in hippocampal- and medial temporal lobe-dependent memory function. A modest, though not statistically significant, reduction in formic acid-soluble levels of Abeta was also observed. To determine if R-flurbiprofen could reverse cognitive deficits in Tg2576 mice where plaque pathology was already robust, a two-week therapeutic treatment was given to older Tg2576 mice with the same dose of R-flurbiprofen. This approach resulted in a significant decrease in Abeta plaque burden but no significant improvement in spatial learning. CONCLUSION: We have found that chronic administration of R-flurbiprofen is able to attenuate spatial learning deficits if given prior to plaque deposition in Tg2576 mice. Given its ability to selectively target Abeta42 production and improve cognitive impairments in transgenic APP mice, as well as promising data from a phase 2 human clinical trial, future studies are needed to investigate the utility of R-flurbiprofen as an AD therapeutic and its possible mechanisms of action. [Abstract/Link to Full Text]

Guo SW, Liu MG, Long YL, Ren LY, Lu ZM, Yu HY, Hou JF, Li H, Gao CY, Cui XY, An YY, Li J, Zhao LF, Chen J
Region- or state-related differences in expression and activation of extracellular signal-regulated kinases (ERKs) in naďve and pain-experiencing rats.
BMC Neurosci. 2007;853.
BACKGROUND: Extracellular signal-regulated kinase (ERK), one member of the mitogen-activated protein kinase (MAPK) family, has been suggested to regulate a diverse array of cellular functions, including cell growth, differentiation, survival, as well as neuronal plasticity. Recent evidence indicates a role for ERKs in nociceptive processing in both dorsal root ganglion and spinal cord. However, little literature has been reported to examine the differential distribution and activation of ERK isoforms, ERK1 and ERK2, at different levels of pain-related pathways under both normal and pain states. In the present study, quantitative blot immunolabeling technique was used to determine the spatial and temporal expression of ERK1 and ERK2, as well as their activated forms, in the spinal cord, primary somatosensory cortex (SI area of cortex), and hippocampus under normal, transient pain and persistent pain states. RESULTS: In naďve rats, we detected regional differences in total expression of ERK1 and ERK2 across different areas. In the spinal cord, ERK1 was expressed more abundantly than ERK2, while in the SI area of cortex and hippocampus, there was a larger amount of ERK2 than ERK1. Moreover, phosphorylated ERK2 (pERK2), not phosphorylated ERK1 (pERK1), was normally expressed with a high level in the SI area and hippocampus, but both pERK1 and pERK2 were barely detectable in normal spinal cord. Intraplantar saline or bee venom injection, mimicking transient or persistent pain respectively, can equally initiate an intense and long-lasting activation of ERKs in all three areas examined. However, isoform-dependent differences existed among these areas, that is, pERK2 exhibited stronger response than pERK1 in the spinal cord, whereas ERK1 was more remarkably activated than ERK2 in the S1 area and hippocampus. CONCLUSION: Taken these results together, we conclude that: (1) under normal state, while ERK immunoreactivity is broadly distributed in the rat central nervous system in general, the relative abundance of ERK1 and ERK2 differs greatly among specific regions; (2) under pain state, either ERK1 or ERK2 can be effectively phosphorylated with a long-term duration by both transient and persistent pain, but their response patterns differ from each other across distinct regions; (3) The long-lasting ERKs activation induced by bee venom injection is highly correlated with our previous behavioral, electrophysiological, morphological and pharmacological observations, lending further support to the functional importance of ERKs-mediated signaling pathways in the processing of negative consequences of pain associated with sensory, emotional and cognitive dimensions. [Abstract/Link to Full Text]


Recent Articles in BMC Neurology

Crooks VC, Parsons TD, Buckwalter JG
Validation of the Cognitive Assessment of Later Life Status (CALLS) instrument: a computerized telephonic measure.
BMC Neurol. 2007;710.
BACKGROUND: Brief screening tests have been developed to measure cognitive performance and dementia, yet they measure limited cognitive domains and often lack construct validity. Neuropsychological assessments, while comprehensive, are too costly and time-consuming for epidemiological studies. This study's aim was to develop a psychometrically valid telephone administered test of cognitive function in aging. METHODS: Using a sequential hierarchical strategy, each stage of test development did not proceed until specified criteria were met. The 30 minute Cognitive Assessment of Later Life Status (CALLS) measure and a 2.5 hour in-person neuropsychological assessment were conducted with a randomly selected sample of 211 participants 65 years and older that included equivalent distributions of men and women from ethnically diverse populations. RESULTS: Overall Cronbach's coefficient alpha for the CALLS test was 0.81. A principal component analysis of the CALLS tests yielded five components. The CALLS total score was significantly correlated with four neuropsychological assessment components. Older age and having a high school education or less was significantly correlated with lower CALLS total scores. Females scored better overall than males. There were no score differences based on race. CONCLUSION: The CALLS test is a valid measure that provides a unique opportunity to reliably and efficiently study cognitive function in large populations. [Abstract/Link to Full Text]

Borroni B, Grassi M, Agosti C, Paghera B, Alberici A, Di Luca M, Perani D, Padovani A
Latent profile analysis in frontotemporal lobar degeneration and related disorders: clinical presentation and SPECT functional correlates.
BMC Neurol. 2007;79.
BACKGROUND: Frontotemporal Lobar Degeneration (FTLD) thus recently renamed, refers to a spectrum of heterogeneous conditions. This same heterogeneity of presentation represents the major methodological limit for the correct evaluation of clinical designation and brain functional correlates. At present, no study has investigated clinical clusters due to specific cognitive and behavioural disturbances beyond current clinical criteria.The aim of this study was to identify clinical FTLD presentation, based on cognitive and behavioural profile, and to define their SPECT functional correlations. METHODS: Ninety-seven FTLD patients entered the study. A clinical evaluation and standardised assessment were preformed, as well as a brain SPECT perfusion imaging study. Latent Profile Analysis on clinical, neuropsychological, and behavioural data was performed. Voxel-basis analysis of SPECT data was computed. RESULTS: Three specific clusters were identified and named "pseudomanic behaviour" (LC1), "cognitive" (LC2), and "pseudodepressed behaviour" (LC3) endophenotypes. These endophenotypes showed a comparable hypoperfusion in left temporal lobe, but a specific pattern involving: medial and orbitobasal frontal cortex in LC1, subcortical brain region in LC2, and right dorsolateral frontal cortex and insula in LC3. CONCLUSION: These findings provide evidence that specific functional-cluster symptom relationship can be delineated in FTLD patients by a standardised assessment. The understanding of the different functional correlates of clinical presentations will hopefully lead to the possibility of individuating diagnostic and treatment algorithms. [Abstract/Link to Full Text]

Robertson KR, Nakasujja N, Wong M, Musisi S, Katabira E, Parsons TD, Ronald A, Sacktor N
Pattern of neuropsychological performance among HIV positive patients in Uganda.
BMC Neurol. 2007;78.
BACKGROUND: Few studies have examined cognitive functioning of HIV positive patients in sub-Saharan Africa. It cannot be assumed that HIV positive patients in Africa exhibit the same declines as patients in high-resource settings, since there are differences that may influence cognitive functioning including nutrition, history of concomitant disease, and varying HIV strains, among other possibilities. Part of the difficulty of specifying abnormalities in neuropsychological functioning among African HIV positive patients is that there are no readily available African normative databases. The purpose of the current study was to evaluate the pattern of neuropsychological performance in a sample of HIV positive patients in comparison to HIV negative control subjects in Uganda. METHODS: The neuropsychological test scores of 110 HIV positive patients (WHO Stage 2, n = 21; WHO Stage 3, n = 69; WHO Stage 4, n = 20) were contrasted with those of 100 control subjects on measures of attention/concentration, mental flexibility, learning/memory, and motor functioning. RESULTS: Analysis of covariance (ANCOVA) revealed significant group differences on measures of verbal learning and memory, speed of processing, attention and executive functioning between HIV seropositive and seronegative subjects. CONCLUSION: Ugandan patients with HIV demonstrated relative deficits on measures of verbal learning and memory, speed of processing, attention, and executive functioning compared to HIV negative controls. These results from a resource limited region where clades A and D are prevalent are consistent with previous findings in the developed world where clade B predominates. [Abstract/Link to Full Text]

White PD, Sharpe MC, Chalder T, DeCesare JC, Walwyn R
Protocol for the PACE trial: a randomised controlled trial of adaptive pacing, cognitive behaviour therapy, and graded exercise, as supplements to standardised specialist medical care versus standardised specialist medical care alone for patients with the chronic fatigue syndrome/myalgic encephalomyelitis or encephalopathy.
BMC Neurol. 2007;76.
BACKGROUND: Chronic fatigue syndrome (CFS, also called myalgic encephalomyelitis /encephalopathy or ME) is a debilitating condition with no known cause or cure. Improvement may occur with medical care and additional therapies of pacing, cognitive behavioural therapy and graded exercise therapy. The latter two therapies have been found to be efficacious in small trials, but patient organisations surveys have reported adverse effects. Although pacing has been advocated by patient organisations, it lacks empirical support. Specialist medical care is commonly provided but its efficacy when given alone is not established. This trial compares the efficacy of the additional therapies when added to specialist medical care against specialist medical care alone. METHODS: 600 patients, who meet operationalised diagnostic criteria for CFS, will be recruited from secondary care into a randomised trial of four treatments, stratified by current co morbid depressive episode and different CFS/ME criteria. The four treatments are standardised specialist medical care either given alone, or with adaptive pacing therapy or cognitive behaviour therapy or graded exercise therapy. Supplementary therapies will involve fourteen sessions over 23 weeks and a booster session at 36 weeks. Outcome will be assessed at 12, 24, and 52 weeks after randomisation. Two primary outcomes of self-rated fatigue and physical function will assess differential effects of each treatment on these measures. Secondary outcomes include adverse events and reactions, subjective measures of symptoms, mood, sleep and function and objective measures of physical activity, fitness, cost-effectiveness and cost-utility. The primary analysis will be based on intention to treat and will use logistic regression models to compare treatments. Secondary outcomes will be analysed by repeated measures analysis of variance with a linear mixed model. All analyses will allow for stratification factors. Mediators and moderators will be explored using multiple linear and logistic regression techniques with interactive terms, with the sample split into two to allow validation of the initial models. Economic analyses will incorporate sensitivity measures. DISCUSSION: The results of the trial will provide information about the benefits and adverse effects of these treatments, their cost-effectiveness and cost-utility, the process of clinical improvement and the predictors of efficacy. [Abstract/Link to Full Text]

Vesper J, Haak S, Ostertag C, Nikkhah G
Subthalamic nucleus deep brain stimulation in elderly patients--analysis of outcome and complications.
BMC Neurol. 2007;77.
BACKGROUND: There is an ongoing discussion about age limits for deep brain stimulation (DBS). Current indications for DBS are tremor-dominant disorders, Parkinson's disease, and dystonia. Electrode implantation for DBS with analgesia and sedation makes surgery more comfortable, especially for elderly patients. However, the value of DBS in terms of benefit-risk ratio in this patient population is still uncertain. METHODS: Bilateral electrode implantation into the subthalamic nucleus (STN) was performed in a total of 73 patients suffering from Parkinson's disease. Patients were analyzed retrospectively. For this study they were divided into two age groups: group I (age <65 years, n = 37) and group II (age > or = 65 years, n = 36). Examinations were performed preoperatively and at 6-month follow-up intervals for 24 months postoperatively. Age, UPDRS motor score (part III) on/off, Hoehn & Yahr score, Activity of Daily Living (ADL), L-dopa medication, and complications were determined. RESULTS: Significant differences were found in overall performance determined as ADL scores (group I: 48/71 points, group II: 41/62 points [preoperatively/6-month postoperatively]) and in the rate of complications (group I: 4 transient psychosis, 4 infections in a total of 8 patients, group II: 2 deaths [unrelated to surgery], 1 intracerebral hemorrhage, 7 transient psychosis, 3 infections, 2 pneumonia in a total of 13 patients), (p < 0.05). Interestingly, changes in UPDRS scores, Hoehn & Yahr scores, and L-dopa medication were not statistically different between the two groups. CONCLUSION: DBS of the STN is clinically as effective in elderly patients as it is in younger ones. However, a more careful selection and follow-up of the elderly patients are required because elderly patients have a higher risk of surgery-related complications and a higher morbidity rate. [Abstract/Link to Full Text]

Emsley HC, Smith CJ, Gavin CM, Georgiou RF, Vail A, Barberan EM, Illingworth K, Scarth S, Wickramasinghe V, Hoadley ME, Rothwell NJ, Tyrrell PJ, Hopkins SJ
Clinical outcome following acute ischaemic stroke relates to both activation and autoregulatory inhibition of cytokine production.
BMC Neurol. 2007;75.
BACKGROUND: As critical mediators of local and systemic inflammatory responses, cytokines are produced in the brain following ischaemic stroke. Some have been detected in the circulation of stroke patients, but their role and source is unclear. Focusing primarily on interleukin(IL)-1-related mechanisms, we serially measured plasma inflammatory markers, and the production of cytokines by whole blood, from 36 patients recruited within 12 h and followed up to 1 year after acute ischaemic stroke (AIS). RESULTS: Admission plasma IL-1 receptor antagonist (IL-1ra) concentration was elevated, relative to age-, sex-, and atherosclerosis-matched controls. IL-1beta, soluble IL-1 receptor type II, tumour necrosis factor (TNF)-alpha, TNF-RII, IL-10 and leptin concentrations did not significantly differ from controls, but peak soluble TNF receptor type I (sTNF-RI) in the first week correlated strongly with computed tomography infarct volume at 5-7 days, mRS and BI at 3 and 12 months. Neopterin was raised in patients at 5-7 d, relative to controls, and in subjects with significant atherosclerosis. Spontaneous IL-1beta, TNF-alpha and IL-6 gene and protein expression by blood cells was minimal, and induction of these cytokines by lipopolysaccharide (LPS) was significantly lower in patients than in controls during the first week. Minimum LPS-induced cytokine production correlated strongly with mRS and BI, and also with plasma cortisol. CONCLUSION: Absence of spontaneous whole blood gene activation or cytokine production suggests that peripheral blood cells are not the source of cytokines measured in plasma after AIS. Increased plasma IL-1ra within 12 h of AIS onset, the relationship between sTNF-RI and stroke severity, and suppressed cytokine induction suggests early activation of endogenous immunosuppressive mechanisms after AIS. [Abstract/Link to Full Text]

Orlacchio A, Calabresi P, Rum A, Tarzia A, Salvati AM, Kawarai T, Stefani A, Pisani A, Bernardi G, Cianciulli P, Caprari P
Neuroacanthocytosis associated with a defect of the 4.1R membrane protein.
BMC Neurol. 2007;74.
BACKGROUND: Neuroacanthocytosis (NA) denotes a heterogeneous group of diseases that are characterized by nervous system abnormalities in association with acanthocytosis in the patients' blood. The 4.1R protein of the erythrocyte membrane is critical for the membrane-associated cytoskeleton structure and in central neurons it regulates the stabilization of AMPA receptors on the neuronal surface at the postsynaptic density. We report clinical, biochemical, and genetic features in four patients from four unrelated families with NA in order to explain the cause of morphological abnormalities and the relationship with neurodegenerative processes. CASE PRESENTATION: All patients were characterised by atypical NA with a novel alteration of the erythrocyte membrane: a 4.1R protein deficiency. The 4.1R protein content was significantly lower in patients (3.40 +/- 0.42) than in controls (4.41 +/- 0.40, P < 0.0001), reflecting weakened interactions of the cytoskeleton with the membrane. In patients IV:1 (RM23), IV:3 (RM15), and IV:6 (RM16) the 4.1 deficiency seemed to affect the horizontal interactions of spectrin and an impairment of the dimer self-association into tetramers was detected. In patient IV:1 (RM16) the 4.1 deficiency seemed to affect the skeletal attachment to membrane and the protein band 3 was partially reduced. CONCLUSION: A decreased expression pattern of the 4.1R protein was observed in the erythrocytes from patients with atypical NA, which might reflect the expression pattern in the central nervous system, especially basal ganglia, and might lead to dysfunction of AMPA-mediated glutamate transmission. [Abstract/Link to Full Text]

Sparks S, Rakocevic G, Joe G, Manoli I, Shrader J, Harris-Love M, Sonies B, Ciccone C, Dorward H, Krasnewich D, Huizing M, Dalakas MC, Gahl WA
Intravenous immune globulin in hereditary inclusion body myopathy: a pilot study.
BMC Neurol. 2007;73.
BACKGROUND: Hereditary Inclusion Body Myopathy (HIBM) is an autosomal recessive, adult onset, non-inflammatory neuromuscular disorder with no effective treatment. The causative gene, GNE, codes for UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, which catalyzes the first two reactions in the synthesis of sialic acid. Reduced sialylation of muscle glycoproteins, such as alpha-dystroglycan and neural cell adhesion molecule (NCAM), has been reported in HIBM. METHODS: We treated 4 HIBM patients with intravenous immune globulin (IVIG), in order to provide sialic acid, because IgG contains 8 micromol of sialic acid/g. IVIG was infused as a loading dose of 1 g/kg on two consecutive days followed by 3 doses of 400 mg/kg at weekly intervals. RESULTS: For all four patients, mean quadriceps strength improved from 19.0 kg at baseline to 23.2 kg (+22%) directly after IVIG loading to 25.6 kg (+35%) at the end of the study. Mean shoulder strength improved from 4.1 kg at baseline to 5.9 kg (+44%) directly after IVIG loading to 6.0 kg (+46%) at the end of the study. The composite improvement for 8 other muscle groups was 5% after the initial loading and 19% by the end of the study. Esophageal motility and lingual strength improved in the patients with abnormal barium swallows. Objective measures of functional improvement gave variable results, but the patients experienced improvements in daily activities that they considered clinically significant. Immunohistochemical staining and immunoblotting of muscle biopsies for alpha-dystroglycan and NCAM did not provide consistent evidence for increased sialylation after IVIG treatment. Side effects were limited to transient headaches and vomiting. CONCLUSION: The mild benefits in muscle strength experienced by HIBM patients after IVIG treatment may be related to the provision of sialic acid supplied by IVIG. Other sources of sialic acid are being explored as treatment options for HIBM. [Abstract/Link to Full Text]

Tilgner J, Müller K, Ghanem N, Lutterbach J, Vesper J
Brain metastases as primary manifestation of a melanocytic malignant peripheral nerve sheath tumor in a 60-year-old man.
BMC Neurol. 2007;72.
BACKGROUND: Malignant peripheral nerve sheath tumors are rare tumor entities that originate from peripheral nerve sheaths and have an unfavorable prognosis. Metastatic spread to the cerebral parenchyma is absolutely rare. This case report describes the clinical course in a 60-year-old man whose tumor came to medical attention because of a seizure. CASE PRESENTATION: Magnetic resonance imaging demonstrated two intracerebral lesions. The symptomatic lesion was removed microneurosurgically and histology demonstrated a metastasis from a malignant peripheral nerve sheath tumor. Postoperatively, whole-brain irradiation was performed. The primary tumor was identified in the area of the sciatic nerve on the right. Follow-up 14 months after resection showed that there was no progression of the intracerebral lesions but an increase in size and number of distant metastases. CONCLUSION: There are no generally accepted guidelines for the treatment of malignant peripheral nerve sheath tumors with cerebral metastases. This case report presents and discusses one possible therapeutic approach. Due to the poor overall prognosis, the least invasive therapy should be chosen. [Abstract/Link to Full Text]

Yadav YR, Mukerji G, Shenoy R, Basoor A, Jain G, Nelson A
Endoscopic management of hypertensive intraventricular haemorrhage with obstructive hydrocephalus.
BMC Neurol. 2007;71.
BACKGROUND: Intracranial haemorrhage accounts for 30-60 % of all stroke admissions into a hospital, with hypertension being the main risk factor. Presence of intraventricular haematoma is considered a poor prognostic factor due to the resultant obstruction to CSF and the mass effect following the presence of blood resulting in raised intracranial pressure and hydrocephalus. We report the results following endoscopic decompression of obstructive hydrocephalus and evacuation of haematoma in patients with hypertensive intraventricular haemorrhage. METHODS: During a two year period, 25 patients diagnosed as having an intraventricular haemorrhage with obstructive hydrocephalus secondary to hypertension were included in this study. All patients underwent endoscopic evacuation of the haematoma under general anaesthesia. Post operative evaluation was done by CT scan and Glasgow outcome scale. RESULTS: Of the 25 patients, thalamic haemorrhage was observed in 12 (48%) patients, while, 11 (44%) had a putaminal haematoma. Nine (36%) patients had a GCS of 8 or less pre-operatively. Resolution of hydrocephalus following endoscopic evacuation was observed in 24 (96%) patients. No complications directly related to the surgical technique were encountered in our study. At six months follow-up, a mortality rate of 6.3% and 55.5% was observed in patients with a pre-operative GCS of > or = 9 and < or = 8 respectively. Thirteen of the 16 (81.3%) patients with a pre-operative GCS >/= 9 had good recovery. CONCLUSION: Endoscopic technique offers encouraging results in relieving hydrocephalus in hypertensive intraventricular haemorrhage. Final outcome is better in patient with a pre-operative GCS of >9. Future improvements in instrumentation and surgical techniques, with careful case selection may help improve outcome in these patients. [Abstract/Link to Full Text]

Pinkhardt EH, van Elst LT, Ludolph AC, Kassubek J
Amygdala size in amyotrophic lateral sclerosis without dementia: an in vivo study using MRI volumetry.
BMC Neurol. 2006;648.
BACKGROUND: Evidence for extra-motor involvement in non-demented patients with amyotrophic lateral sclerosis (ALS) has been provided by multiple studies, in particular neuropathological studies have demonstrated neuronal loss in the amygdala. The aim of this study was to investigate possible alterations of amygdala volumes in vivo. METHODS: Twenty-two moderately disabled patients with definite ALS without cognitive or behavioural deficits and 22 age-matched healthy controls were included. Amygdala and total brain volumes were measured by region-of-interest-based volumetry in 3-D MRI. RESULTS: A trend was observed with reduced amygdala size in the ALS group, since mean absolute and brain size-corrected amygdala volumes were 6.9% and 7.6% lower in the patient group compared to those in normal controls (P = 0.086 and P = 0.110), respectively. CONCLUSION: Volumetrically identifiable alterations of the amygdala can be mapped in vivo and may be associated with psychopathological findings in later stages of ALS. [Abstract/Link to Full Text]

Fung HC, Chen CM, Hardy J, Singleton AB, Wu YR
A common genetic factor for Parkinson disease in ethnic Chinese population in Taiwan.
BMC Neurol. 2006;647.
BACKGROUND: Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized clinically by resting tremor, bradykinesia, postural instability and rigidity. The prevalence of PD is approximately 2% of the population over 65 years of age and 1.7 million PD patients (age > or = 55 years) live in China. Recently, a common LRRK2 variant Gly2385Arg was reported in ethnic Chinese PD population in Taiwan. We analyzed the frequency of this variant in our independent PD case-control population of Han Chinese from Taiwan. METHODS: 305 patients and 176 genetically unrelated healthy controls were examined by neurologists and the diagnosis of PD was based on the published criteria. The region of interest was amplified with standard polymerase chain reaction (PCR). PCR fragments then were directly sequenced in both forward and reverse directions. Differences in genotype frequencies between groups were assessed by the X2 test, while X2 analysis was used to test for the Hardy-Weinberg equilibrium. RESULTS: Of the 305 patients screened we identified 27 (9%) with heterozygous G2385R variant. This mutation was only found in 1 (0.5%) in our healthy control samples (odds ratio = 16.99, 95% CI: 2.29 to 126.21, p = 0.0002). Sequencing of the entire open reading frame of LRRK2 in G2385R carriers revealed no other variants. CONCLUSION: These data suggest that the G2385R variant contributes significantly to the etiology of PD in ethnic Han Chinese individuals. With consideration of the enormous and expanding aging Chinese population in mainland China and in Taiwan, this variant is probably the most common known genetic factor for PD worldwide. [Abstract/Link to Full Text]

Bogoslovsky T, Häppölä O, Salonen O, Lindsberg PJ
Induced hypertension for the treatment of acute MCA occlusion beyond the thrombolysis window: case report.
BMC Neurol. 2006;646.
BACKGROUND: A minority of stroke patients is eligible for thrombolytic therapy. Small pilot case series have hinted that elevation of incident arterial blood pressure might be associated with a favorable prognosis either in acute or subacute stroke. However, these patients were not considered for thrombolytic therapy and were not followed - up systematically. We used pharmacologically induced hypertension in a stroke patient with middle cerebral artery (MCA) occlusion ineligible for thrombolysis that was followed-up by radiological, clinical and functional outcome assessment. CASE PRESENTATION: A patient with acute embolic MCA occlusion producing a large, ischemic penumbra confirmed by perfusion CT was treated by induced hypertension with phenylephrine started within 4 h of admission. Increase in the mean arterial pressure by 20% led to a reduction of neurological deficit by 3 points on the National Institute of Stroke Scale. MRI and CT scans performed during phenylephrine infusion showed the presence of limited subcortical and cortical infarct changes that were clearly less extensive than the perfusion deficit in the brain perfusion CT at baseline, found in the absence of MCA patency. No complications due to induced hypertension therapy occurred. Moderate functional improvement up to modified Rankin scale 2 at follow up took place. CONCLUSION: Induced hypertension in acute ischemic stroke seems clinically feasible and may be beneficial in selected normo- or hypotensive stroke patients not eligible for thrombolytic recanalization therapy. [Abstract/Link to Full Text]

Monstad P, Řkstad S, Mygland A
Inferior vestibular neuritis: 3 cases with clinical features of acute vestibular neuritis, normal calorics but indications of saccular failure.
BMC Neurol. 2006;645.
BACKGROUND: Vestibular neuritis (VN) is commonly diagnosed by demonstration of unilateral vestibular failure, as unilateral loss of caloric response. As this test reflects the function of the superior part of the vestibular nerve only, cases of pure inferior nerve neuritis will be lost. CASE PRESENTATIONS: We describe three patients with symptoms suggestive of VN, but normal calorics. All 3 had unilateral loss of vestibular evoked myogenic potential. A slight, asymptomatic position dependent nystagmus, with the pathological ear down, was observed. CONCLUSION: We believe that these patients suffer from pure inferior nerve vestibular neuritis. [Abstract/Link to Full Text]

Momeni P, Schymick J, Jain S, Cookson MR, Cairns NJ, Greggio E, Greenway MJ, Berger S, Pickering-Brown S, Chiň A, Fung HC, Holtzman DM, Huey ED, Wassermann EM, Adamson J, Hutton ML, Rogaeva E, St George-Hyslop P, Rothstein JD, Hardiman O, Grafman J, Singleton A, Hardy J, Traynor BJ
Analysis of IFT74 as a candidate gene for chromosome 9p-linked ALS-FTD.
BMC Neurol. 2006;644.
BACKGROUND: A new locus for amyotrophic lateral sclerosis--frontotemporal dementia (ALS-FTD) has recently been ascribed to chromosome 9p. METHODS: We identified chromosome 9p segregating haplotypes within two families with ALS-FTD (F476 and F2) and undertook mutational screening of candidate genes within this locus. RESULTS: Candidate gene sequencing at this locus revealed the presence of a disease segregating stop mutation (Q342X) in the intraflagellar transport 74 (IFT74) gene in family 476 (F476), but no mutation was detected within IFT74 in family 2 (F2). While neither family was sufficiently informative to definitively implicate or exclude IFT74 mutations as a cause of chromosome 9-linked ALS-FTD, the nature of the mutation observed within F476 (predicted to truncate the protein by 258 amino acids) led us to sequence the open reading frame of this gene in a large number of ALS and FTD cases (n = 420). An additional sequence variant (G58D) was found in a case of sporadic semantic dementia. I55L sequence variants were found in three other unrelated affected individuals, but this was also found in a single individual among 800 Human Diversity Gene Panel samples. CONCLUSION: Confirmation of the pathogenicity of IFT74 sequence variants will require screening of other chromosome 9p-linked families. [Abstract/Link to Full Text]

Deijen JB, Stoffers D, Berendse HW, Wolters ECh, Theeuwes J
Abnormal susceptibility to distracters hinders perception in early stage Parkinson's disease: a controlled study.
BMC Neurol. 2006;643.
BACKGROUND: One of the perceptual abnormalities observed in Parkinson's disease (PD) is a deficit in the suppression of reflexive saccades that are automatically triggered by the onset of a peripheral target. Impairment of substantia nigra function is thought to lead to this reduced ability to suppress reflexive saccades. METHODS: The present study examined whether this perceptual deficit is also present in early stage PD when using hardly noticeable task-irrelevant stimuli. Eleven non-demented de novo, untreated PD patients (mean age 57 yr, range 44-70) participated in the study as well as 12 age-matched controls. Performance on an 'oculomotor capture' task, in which in half of the trials an irrelevant stimulus with sudden onset was added to the display, was compared between patients and controls. Analysis of variance (ANOVA) was performed with group (patients/controls) and age (< 61 yrs/> or = 61 yrs) as independent factors and type of trial (control/distracter) as repeated measurements factor. The factor sex was used as covariate. RESULTS: With respect to Reaction Time (RT), a significant interaction between group and condition was found. RTs increased under the 'irrelevant stimulus' condition in both groups, the patients exhibiting a significantly larger increase in RTs than the control group. Also, a significant interaction effect between group and condition for number of correct responses was found. The number of correct responses was reduced in the onset distracter condition, the reduction being larger in the patients. In the patient group, contrary to the control group, a higher age was associated with fewer correct responses at baseline and in the onset distracter condition, suggesting that perceptual functions in PD are highly susceptible to the effects of ageing. The increased reaction times and larger number of incorrect responses of the PD patients in the onset distracter condition may be related to impairments of substantia nigra function and lower brain stem. CONCLUSION: The capture task seems to be a sensitive instrument to detect early perceptual deficits in PD. The magnitude of the observed deficits suggests that perceptual functions in early stage PD are so substantially impaired that this may interfere with daily activities. [Abstract/Link to Full Text]

Cysique LA, Maruff P, Brew BJ
Valproic acid is associated with cognitive decline in HIV-infected individuals: a clinical observational study.
BMC Neurol. 2006;642.
BACKGROUND: Valproic acid (VPA) is often used to control pain in HIV-related neuropathy. However, the effect of VPA on cognitive functions in advanced HIV-infected individuals is largely unknown. A recent study would suggest that it may have a neuroprotective effect, the doses used were low and the observation period short. METHODS: We used a well studied HIV-infected cohort assessed for a median of 15 (range 6-27 months) to determine whether individuals who were receiving VPA showed any cognitive benefits. Multiple regression procedures allowed us to control for the effects of HAART and HIV disease status as well as numbers of visits and variation in VPA intake over-time. RESULTS: We found a negative effect of VPA (mean dose of 850 mg/d for 18 months on average; range 6-27 months) on cognitive performance in eight advanced HIV-infected individuals compared to 32 advanced HIV-infected individuals on no VPA who had comparable neuropsychological performance at baseline. Control for plasma HIV viral load provided similar results. CONCLUSION: Our results suggest that further studies of VPA in advanced HIV-infection should cautiously include high doses over prolonged periods of at least 18 months in order to more accurately determine whether the posited neuroprotective benefit of VPA still occurs or whether it is replaced by toxicity. [Abstract/Link to Full Text]

Reeves WC, Heim C, Maloney EM, Youngblood LS, Unger ER, Decker MJ, Jones JF, Rye DB
Sleep characteristics of persons with chronic fatigue syndrome and non-fatigued controls: results from a population-based study.
BMC Neurol. 2006;641.
BACKGROUND: The etiology and pathophysiology of chronic fatigue syndrome (CFS) remain inchoate. Attempts to elucidate the pathophysiology must consider sleep physiology, as unrefreshing sleep is the most commonly reported of the 8 case-defining symptoms of CFS. Although published studies have consistently reported inefficient sleep and documented a variable occurrence of previously undiagnosed primary sleep disorders, they have not identified characteristic disturbances in sleep architecture or a distinctive pattern of polysomnographic abnormalities associated with CFS. METHODS: This study recruited CFS cases and non-fatigued controls from a population based study of CFS in Wichita, Kansas. Participants spent two nights in the research unit of a local hospital and underwent overnight polysomnographic and daytime multiple sleep latency testing in order to characterize sleep architecture. RESULTS: Approximately 18% of persons with CFS and 7% of asymptomatic controls were diagnosed with severe primary sleep disorders and were excluded from further analysis. These rates were not significantly different. Persons with CFS had a significantly higher mean frequency of obstructive apnea per hour (p = .003); however, the difference was not clinically meaningful. Other characteristics of sleep architecture did not differ between persons with CFS and controls. CONCLUSION: Although disordered breathing during sleep may be associated with CFS, this study generally did not provide evidence that altered sleep architecture is a critical factor in CFS. Future studies should further scrutinize the relationship between subjective sleep quality relative to objective polysomnographic measures. [Abstract/Link to Full Text]

Jepsen JR, Thomsen G
A cross-sectional study of the relation between symptoms and physical findings in computer operators.
BMC Neurol. 2006;640.
BACKGROUND: The character of upper limb disorder in computer operators is subject to debate. A peripheral nerve-involvement is suggested from the common presence of a triad of symptoms consisting of pain, paraestesiae and subjective weakness, and from physical findings suggesting neuropathy. This study aimed to examine the outcome of a detailed neurological examination in computer operators and to compare findings with the presence of symptoms. METHODS: 96 graphical computer operators answered a modified Nordic Questionnaire including information on perceived pain in the shoulder, elbow, and wrist/hand scored for each region on a VAS-scale 0-9. In addition, they underwent a physical examination including the subjective assessment of the individual function of 11 upper limb muscles, of algesia in five and vibratory threshold in three territories, respectively, and of mechanosensitivity of nerves at seven locations. In order to reflect an involvement of the brachial plexus (chord level), the posterior interosseous nerve and the median nerve at elbow level we defined three patterns of neurological findings illustrating the course of nerves and their innervation. The pain scores summarized for the three upper limb regions (min. = 0, max = 27) in the mouse-operating and contralateral limbs were compared by a Wilcoxon test and the relation to each physical item analyzed by Kendall's rank correlation. The relation of summarized pain to each pattern was studied by application of a test of the trend across ordered groups (patterns). RESULTS: Pain, paraestesiae and subjective weakness was reported for 67, 23, and 7 mouse-operating limbs, respectively, with the summarized pain scores exceeding 4 in 33 limbs. Abnormal physical findings were prevalent. The summarized pain was significantly related to a reduced function in five muscles, to mechanical allodynia at one location and to elevated threshold to vibration in two territories. Brachial plexopathy was diagnosed in 9/2, median neuropathy in 13/5 and posterior interosseous neuropathy in 13/8 mouse operating/contralateral limbs, respectively. The summarized pain was significantly higher in the mouse-operating limbs and in limbs with any of the defined patterns. There was a significant trend between the summarized pain and the summarized scores for the items contained in each pattern. CONCLUSION: This small-scale study of a group of computer-operators currently in work and with no or minor upper limb symptoms has indicated in symptomatic subjects the presence of peripheral nerve-afflictions with specific locations. [Abstract/Link to Full Text]

Ietswaart M, Johnston M, Dijkerman HC, Scott CL, Joice SA, Hamilton S, Macwalter RS
Recovery of hand function through mental practice: a study protocol.
BMC Neurol. 2006;639.
BACKGROUND: The study aims to assess the therapeutic benefits of motor imagery training in stroke patients with persistent motor weakness. There is evidence to suggest that mental rehearsal of movement can produce effects normally attributed to practising the actual movements. Imagining hand movements could stimulate the redistribution of brain activity, which accompanies recovery of hand function, thus resulting in a reduced motor deficit. METHODS/DESIGN: A multi-centre randomised controlled trial recruiting individuals between one and six months post-stroke (n = 135). Patients are assessed before and after a four-week evaluation period. In this trial, 45 patients daily mentally rehearse movements with their affected arm under close supervision. Their recovery is compared to 45 patients who perform closely supervised non-motor mental rehearsal, and 45 patients who are not engaged in a training program. Motor imagery training effectiveness is evaluated using outcome measures of motor function, psychological processes, and level of disability. DISCUSSION: The idea of enhancing motor recovery through the use of motor imagery rehabilitation techniques is important with potential implications for clinical practice. The techniques evaluated as part of this randomised controlled trial are informed by the current understanding in cognitive neuroscience and the trial is both of scientific and applied interest. [Abstract/Link to Full Text]

Al Shafaee MA, Ganguly SS, Al Asmi AR
Perception of stroke and knowledge of potential risk factors among Omani patients at increased risk for stroke.
BMC Neurol. 2006;638.
BACKGROUND: Previous studies have demonstrated poor knowledge of stroke among patients with established risk factors. This study aims to assess the baseline knowledge, among patients with increased risk for stroke in Oman, of warning symptoms of stroke, impending risk factors, treatment, and sources of information. METHODS: In April 2005, trained family practice residents at Sultan Qaboos University Hospital Clinics (cardiology, neurology, diabetic, and lipid clinics), using a standardised, structured, pre-tested questionnaire, conducted a survey of 400 Omani patients. These patients all demonstrated potential risk factors for stroke. RESULTS: Only 35% of the subjects stated that the brain is the organ affected by a stroke, 68% correctly identified at least one symptom/sign of a stroke, and 43% correctly identified at least one stroke risk factor. The majority (62%) did not believe they were at increased risk for stroke, and 98% had not been advised by their attending physician that their clinical conditions were risk factors for stroke. In the multivariable logistic regression analysis, lower age and higher levels of education were associated with better knowledge regarding the organ involved in stroke, stroke symptoms, and risk factors. CONCLUSION: Because their knowledge about stroke risk factors was poor, the subjects in this study were largely unaware of their increased risk for stroke. Intensive health education is needed to improve awareness of stroke, especially among the most vulnerable groups. [Abstract/Link to Full Text]

Elkind MS, Coates K, Tai W, Paik MC, Boden-Albala B, Sacco RL
Levels of acute phase proteins remain stable after ischemic stroke.
BMC Neurol. 2006;637.
BACKGROUND: Inflammation and inflammatory biomarkers play an important role in atherosclerosis and cardiovascular disease. Little information is available, however, on time course of serum markers of inflammation after stroke. METHODS: First ischemic stroke patients > or =40 years old had levels of high-sensitivity C-reactive protein (hsCRP), serum amyloid A (SAA), and fibrinogen measured in plasma samples drawn at 1, 2, 3, 7, 14, 21 and 28 days after stroke. Levels were log-transformed as needed, and parametric and non-parametric statistical tests were used to test for evidence of a trend in levels over time. Levels of hsCRP and SAA were also compared with levels in a comparable population of stroke-free participants. RESULTS: Mean age of participants with repeated measures (n = 21) was 65.6 +/- 11.6 years, and 13 (61.9%) were men, and 15 (71.4%) were Hispanic. Approximately 75% of patients (n = 15) had mild strokes (NIH Stroke Scale score 0-5). There was no evidence of a time trend in levels of hsCRP, SAA, or fibrinogen for any of the markers during the 28 days of follow-up. Mean log(hsCRP) was 1.67 +/- 1.07 mg/L (median hsCRP 6.48 mg/L) among stroke participants and 1.00 +/- 1.18 mg/L (median 2.82 mg/L) in a group of 1176 randomly selected stroke-free participants from the same community (p = 0.0252). CONCLUSION: Levels of hsCRP are higher in stroke patients than in stroke-free subjects. Levels of inflammatory biomarkers associated with atherosclerosis, including hsCRP, appear to be stable for at least 28 days after first ischemic stroke. [Abstract/Link to Full Text]

Boix R, del Barrio JL, Saz P, Reńé R, Manubens JM, Lobo A, Gascón J, de Arce A, Díaz-Guzmán J, Bergareche A, Bermejo-Pareja F, de Pedro-Cuesta J
Stroke prevalence among the Spanish elderly: an analysis based on screening surveys.
BMC Neurol. 2006;636.
BACKGROUND: This study sought to describe stroke prevalence in Spanish elderly populations and compare it against that of other European countries. METHODS: We identified screening surveys--both published and unpublished--in Spanish populations, which fulfilled specific quality requirements and targeted prevalence of stroke in populations aged 70 years and over. Surveys covering seven geographically different populations with prevalence years in the period 1991-2002 were selected, and the respective authors were then asked to provide descriptions of the methodology and raw age-specific data by completing a questionnaire. In addition, five reported screening surveys in European populations furnished useful data for comparison purposes. Prevalence data were combined, using direct adjustment and logistic regression. RESULTS: The overall study population, resident in central and north-eastern Spain, totalled 10,647 persons and yielded 715 cases. Age-adjusted prevalences, using the European standard population, were 7.3% for men, 5.6% for women, and 6.4% for both sexes. Prevalence was significantly lower in women, OR 0.79 95% CI 0.68-0.93, increased with age, particularly among women, and displayed a threefold spatial variation with statistically significant differences. Prevalences were highest, 8.7%, in suburban, and lowest, 3.8%, in rural populations. Compared to pooled Spanish populations, statistically significant differences were seen in eight Italian populations, OR 1.39 95% CI (1.18-1.64), and in Kungsholmen, Sweden, OR 0.40 95% CI (0.27-0.58). CONCLUSION: Prevalence in central and north-eastern Spain is higher in males and in suburban areas, and displays a threefold geographic variation, with women constituting the majority of elderly stroke sufferers. Compared to reported European data, stroke prevalence in Spain can be said to be medium and presents similar age- and sex-specific traits. [Abstract/Link to Full Text]

Boesenberg-Grosse C, Schulz-Schaeffer WJ, Bodemer M, Ciesielczyk B, Meissner B, Krasnianski A, Bartl M, Heinemann U, Varges D, Eigenbrod S, Kretzschmar HA, Green A, Zerr I
Brain-derived proteins in the CSF: do they correlate with brain pathology in CJD?
BMC Neurol. 2006;635.
BACKGROUND: Brain derived proteins such as 14-3-3, neuron-specific enolase (NSE), S 100b, tau, phosphorylated tau and Abeta1-42 were found to be altered in the cerebrospinal fluid (CSF) in Creutzfeldt-Jakob disease (CJD) patients. The pathogenic mechanisms leading to these abnormalities are not known, but a relation to rapid neuronal damage is assumed. No systematic analysis on brain-derived proteins in the CSF and neuropathological lesion profiles has been performed. METHODS: CSF protein levels of brain-derived proteins and the degree of spongiform changes, neuronal loss and gliosis in various brain areas were analyzed in 57 CJD patients. RESULTS: We observed three different patterns of CSF alteration associated with the degree of cortical and subcortical changes. NSE levels increased with lesion severity of subcortical areas. Tau and 14-3-3 levels increased with minor pathological changes, a negative correlation was observed with severity of cortical lesions. Levels of the physiological form of the prion protein (PrPc) and Abeta1-42 levels correlated negatively with cortical pathology, most clearly with temporal and occipital lesions. CONCLUSION: Our results indicate that the alteration of levels of brain-derived proteins in the CSF does not only reflect the degree of neuronal damage, but it is also modified by the localization on the brain pathology. Brain specific lesion patterns have to be considered when analyzing CSF neuronal proteins. [Abstract/Link to Full Text]

Mudaliar AV, Kashyap RS, Purohit HJ, Taori GM, Daginawala HF
Detection of 65 kD heat shock protein in cerebrospinal fluid of tuberculous meningitis patients.
BMC Neurol. 2006;634.
BACKGROUND: Diagnosis of tuberculous meningitis (TBM) is difficult. Rapid confirmatory diagnosis is essential to initiate required therapy. There are very few published reports about the diagnostic significance of 65 kD heat shock protein (hsp) in TBM patients, which is present in a wide range of Mycobacterium tuberculosis species and elicits a cellular and humoral immune response. In the present study we have conducted a prospective evaluation for the demonstration of 65 kD hsp antigen in cerebrospinal fluid (CSF) of TBM patients, by indirect ELISA method using monoclonal antibodies (mAb) against the 65 kD hsp antigen, for the diagnosis of TBM. METHODS: A total of 160 CSF samples of different groups of patients (confirmed TBM {n = 18}, clinically suspected TBM {n = 62}, non TBM infectious meningitis {n = 35} and non-infectious neurological diseases {n = 45}) were analyzed by indirect ELISA method using mAb to 65 kD hsp antigen. The Kruskal Wallis test (Non-Parametric ANOVA) with the Dunnett post test was used for statistical analysis. RESULTS: The indirect ELISA method yielded 84% sensitivity and 90% specificity for the diagnosis of TBM using mAb to 65 kD hsp antigen. The mean absorbance value of 65 kD hsp antigen in TBM patients was [0.70 +/- 0.23 (0.23-1.29)], significantly higher than the non-TBM infectious meningitis group [0.32 +/- 0.14 (0.12-0.78), P < 0.001] and also higher than the non-infectious neurological disorders group [0.32 +/- 0.13 (0.20-0.78), P < 0.001]. A significant difference in the mean absorbance of 65 kD hsp antigen was noted in the CSF of culture-positive TBM patients [0.94 +/- 0.18 (0.54-1.29)] when compared with clinically suspected TBM patients [0.64 +/- 0.20 (0.23-0.98), P < 0.05]. CONCLUSION: The presence of 65 kD hsp antigen in the CSF of confirmed and suspected cases of TBM would indicate that the selected protein is specific to M. tuberculosis and could be considered as a diagnostic marker for TBM. [Abstract/Link to Full Text]

Sajith J, Ditchfield A, Katifi HA
Extrapontine myelinolysis presenting as acute parkinsonism.
BMC Neurol. 2006;633.
BACKGROUND: Extrapontine myelinolysis presenting with extra pyramidal features suggestive of parkinsonism may be a challenging clinical syndrome. Clinicians should maintain their vigilance while correcting electrolyte imbalances, especially with associated co-morbidity. CASE PRESENTATION: A 41-year-old woman presented with acute parkinsonism like features while on a holiday. This followed slow correction of hyponatraemia after repeated vomiting. MRI changes were suggestive of Extrapontine myelinolysis(EPM). This case is at variance with four previous cases reported in the medical literature in that the patient made a full clinical recovery and the MR changes resolved with symptomatic support alone. CONCLUSION: Extrapontine myelinolysis could make a complete recovery with symptomatic support alone. During hyponatraemia correction, rapid osmotic shifts of fluid that cause hypernatremia, causes myelinolysis rather than absolute serum sodium level. Even gradual correction of hyponatraemia can produce myelinolysis, especially with pre-existing malnourishment, alcoholism, drug misuse, Addison's disease and immuno-suppression. Pallidial sparing is typical of EPM in MRI scans. [Abstract/Link to Full Text]

Mackenzie IR, Butland SL, Devon RS, Dwosh E, Feldman H, Lindholm C, Neal SJ, Ouellette BF, Leavitt BR
Familial frontotemporal dementia with neuronal intranuclear inclusions is not a polyglutamine expansion disease.
BMC Neurol. 2006;632.
BACKGROUND: Many cases of frontotemporal dementia (FTD) are familial, often with an autosomal dominant pattern of inheritance. Some are due to a mutation in the tau- encoding gene, on chromosome 17, and show an accumulation of abnormal tau in brain tissue (FTDP-17T). Most of the remaining familial cases do not exhibit tau pathology, but display neuropathology similar to patients with dementia and motor neuron disease, characterized by the presence of ubiquitin-immunoreactive (ub-ir), dystrophic neurites and neuronal cytoplasmic inclusions in the neocortex and hippocampus (FTLD-U). Recently, we described a subset of patients with familial FTD with autopsy-proven FTLD-U pathology and with the additional finding of ub-ir neuronal intranuclear inclusions (NII). NII are a characteristic feature of several other neurodegenerative conditions for which the genetic basis is abnormal expansion of a polyglutamine-encoding trinucleotide repeat region. The genetic basis of familial FTLD-U is currently not known, however the presence of NII suggests that a subset of cases may represent a polyglutamine expansion disease. METHODS: We studied DNA and post mortem brain tissue from 5 affected members of 4 different families with NII and one affected individual with familial FTLD-U without NII. Patient DNA was screened for CAA/CAG trinucleotide expansion in a set of candidate genes identified using a genome-wide computational approach. Genes containing CAA/CAG trinucleotide repeats encoding at least five glutamines were examined (n = 63), including the nine genes currently known to be associated with human disease. CAA/CAG tract sizes were compared with published normal values (where available) and with those of healthy controls (n = 94). High-resolution agarose gel electrophoresis was used to measure allele size (number of CAA/CAG repeats). For any alleles estimated to be equal to or larger than the maximum measured in the control population, the CAA/CAG tract length was confirmed by capillary electrophoresis. In addition, immunohistochemistry using a monoclonal antibody that recognizes proteins containing expanded polyglutamines (1C2) was performed on sections of post mortem brain tissue from subjects with NII. RESULTS: No significant polyglutamine-encoding repeat expansions were identified in the DNA from any of our FTLD-U patients. NII in the FTLD-U cases showed no 1C2 immunoreactivity. CONCLUSION: We find no evidence to suggest that autosomal dominant FTLD-U with NII is a polyglutamine expansion disease. [Abstract/Link to Full Text]

Borroni B, Perani D, Archetti S, Agosti C, Paghera B, Bellelli G, Di Luca M, Padovani A
Functional correlates of Apolipoprotein E genotype in Frontotemporal Lobar Degeneration.
BMC Neurol. 2006;631.
BACKGROUND: It has been recently demonstrated that in Frontotemporal Lobar Degeneration (FTLD) memory deficits at presentation are commoner than previously thought. Apolipoprotein E (ApoE) genotype, the major genetic risk factor in sporadic late-onset Alzheimer Disease (AD), modulates cerebral perfusion in late middle-age cognitively normal subjects. ApoE epsilon4 homozygous have reduced glucose metabolism in the same regions involved in AD.The aim of this study was to determine whether ApoE genotype might play a key-role in influencing the cerebral functional pattern as well as the degree of memory deficits in FTLD patients. METHODS: Fifty-two unrelated FTLD patients entered the study and underwent a somatic and neurological evaluation, laboratory examinations, a brain structural imaging study, and a brain functional Single Photon Emission Tomography study. ApoE genotype was determined. RESULTS: ApoE genotype influenced both clinical and functional features in FTLD. ApoE epsilon4-carriers were more impaired in long-term memory function (ApoE epsilon4 vs. ApoE non epsilon4, 6.3 +/- 3.9 vs. 10.1 +/- 4.2, p = 0.004) and more hypoperfused in uncus and parahippocampal regions (x,y,z = 38,-6,-20, T = 2.82, cluster size = 100 voxels; -32,-12,-28, T= 2.77, cluster size = 40 voxels). CONCLUSION: The present findings support the view that ApoE genotype might be considered a disease-modifying factor in FTLD, thus contributing to define a specific clinical presentation, and might be of relevance for pharmacological approaches. [Abstract/Link to Full Text]

Johannsen L, Broetz D, Karnath HO
Leg orientation as a clinical sign for pusher syndrome.
BMC Neurol. 2006;630.
BACKGROUND: Effective control of (upright) body posture requires a proper representation of body orientation. Stroke patients with pusher syndrome were shown to suffer from severely disturbed perception of own body orientation. They experience their body as oriented 'upright' when actually tilted by nearly 20 degrees to the ipsilesional side. Thus, it can be expected that postural control mechanisms are impaired accordingly in these patients. Our aim was to investigate pusher patients' spontaneous postural responses of the non-paretic leg and of the head during passive body tilt. METHODS: A sideways tilting motion was applied to the trunk of the subject in the roll plane. Stroke patients with pusher syndrome were compared to stroke patients not showing pushing behaviour, patients with acute unilateral vestibular loss, and non brain damaged subjects. RESULTS: Compared to all groups without pushing behaviour, the non-paretic leg of the pusher patients showed a constant ipsiversive tilt across the whole tilt range for an amount which was observed in the non-pusher subjects when they were tilted for about 15 degrees into the ipsiversive direction. CONCLUSION: The observation that patients with acute unilateral vestibular loss showed no alterations of leg posture indicates that disturbed vestibular afferences alone are not responsible for the disordered leg responses seen in pusher patients. Our results may suggest that in pusher patients a representation of body orientation is disturbed that drives both conscious perception of body orientation and spontaneous postural adjustment of the non-paretic leg in the roll plane. The investigation of the pusher patients' leg-to-trunk orientation thus could serve as an additional bedside tool to detect pusher syndrome in acute stroke patients. [Abstract/Link to Full Text]

Foltynie T, Matthews FE, Ishihara L, Brayne C
The frequency and validity of self-reported diagnosis of Parkinson's Disease in the UK elderly: MRC CFAS cohort.
BMC Neurol. 2006;629.
BACKGROUND: Estimates of the incidence and prevalence of chronic diseases can be made using established cohort studies but these estimates may have lower reliability if based purely on self-reported diagnosis. METHODS: The MRC Cognitive Function & Ageing Study (MRC CFAS) has collected longitudinal data from a population-based random sample of 13004 individuals over the age of 65 years from 5 centres within the UK. Participants were asked at baseline and after a two-year follow-up whether they had received a diagnosis of Parkinson's disease. Our aim was to make estimates of the incidence and prevalence of PD using self-reporting, and then investigate the validity of self-reported diagnosis using other data sources where available, namely death certification and neuropathological examination. RESULTS: The self-reported prevalence of Parkinson's disease (PD) amongst these individuals increases with age from 0.7% (95%CI 0.5-0.9) for 65-75, 1.4% (95%CI 1.0-1.7) for 75-85, and 1.6% (95%CI 1.0-2.3) for 85+ age groups respectively. The overall incidence of self reported PD in this cohort was 200/100,000 per year (95%CI 144-278). Only 40% of the deceased individuals reporting prevalent PD and 35% of those reporting incident PD had diagnoses of PD recorded on their death certificates. Neuropathological examination of individuals reporting PD also showed typical PD changes in only 40%, with the remainder showing basal ganglia pathologies causing parkinsonism rather than true PD pathology. CONCLUSION: Self-reporting of PD status may be used as a screening tool to identify patients for epidemiological study, but inevitably identifies a heterogeneous group of movement disorders patients. Within this group, age, male sex, a family history of PD and reduced cigarette smoking appear to act as independent risk factors for self-reported PD. [Abstract/Link to Full Text]


Recent Articles in Journal of Neuroinflammation

Rock RB, Hu S, Sheng WS, Peterson PK
Morphine stimulates CCL2 production by human neurons.
J Neuroinflammation. 2006;332.
BACKGROUND: Substances of abuse, such as opiates, have a variety of immunomodulatory properties that may influence both neuroinflammatory and neurodegenerative disease processes. The chemokine CCL2, which plays a pivotal role in the recruitment of inflammatory cells in the nervous system, is one of only a few chemokines produced by neurons. We hypothesized that morphine may alter expression of CCL2 by human neurons. METHODS: Primary neuronal cell cultures and highly purified astrocyte and microglial cell cultures were prepared from human fetal brain tissue. Cell cultures were treated with morphine, and cells were examined by RNase protection assay for mRNA. Culture supernatants were assayed by ELISA for CCL2 protein. beta-funaltrexamine (beta-FNA) was used to block mu-opioid receptor (MOR)s. RESULTS: Morphine upregulated CCL2 mRNA and protein in neuronal cultures in a concentration- and time-dependent fashion, but had no effect on CCL2 production in astrocyte or microglial cell cultures. Immunocytochemical analysis also demonstrated CCL2 production in morphine-stimulated neuronal cultures. The stimulatory effect of morphine was abrogated by beta-FNA, indicating an MOR-mediated mechanism. CONCLUSION: Morphine stimulates CCL2 production by human neurons via a MOR-related mechanism. This finding suggests another mechanism whereby opiates could affect neuroinflammatory responses. [Abstract/Link to Full Text]

Kelsen J, Kjaer K, Chen G, Pedersen M, Rřhl L, Frřkiaer J, Nielsen S, Nyengaard JR, Rřnn LC
Parecoxib is neuroprotective in spontaneously hypertensive rats after transient middle cerebral artery occlusion: a divided treatment response?
J Neuroinflammation. 2006;331.
BACKGROUND: Anti-inflammatory treatment affects ischemic damage and neurogenesis in rodent models of cerebral ischemia. We investigated the potential benefit of COX-2 inhibition with parecoxib in spontaneously hypertensive rats (SHRs) subjected to transient middle cerebral artery occlusion (tMCAo). METHODS: Sixty-four male SHRs were randomized to 90 min of intraluminal tMCAo or sham surgery. Parecoxib (10 mg/kg) or isotonic saline was administered intraperitoneally (IP) during the procedure, and twice daily thereafter. Nineteen animals were euthanized after 24 hours, and each hemisphere was examined for mRNA expression of pro-inflammatory cytokines and COX enzymes by quantitative RT-PCR. Twenty-three tMCAo animals were studied with diffusion and T2 weighted MRI within the first 24 hours, and ten of the SHRs underwent follow-up MRI six days later. Thirty-three SHRs were given 5-bromo-2'-deoxy-uridine (BrdU) twice daily on Day 4 to 7 after tMCAo. Animals were euthanized on Day 8 and the brains were studied with free-floating immunohistochemistry for activated microglia (ED-1), hippocampal granule cell BrdU incorporation, and neuronal nuclei (NeuN). Infarct volume estimation was done using the 2D nucleator and Cavalieri principle on NeuN-stained coronal brain sections. The total number of BrdU+ cells in the dentate gyrus (DG) of the hippocampus was estimated using the optical fractionator. RESULTS: We found a significant reduction in infarct volume in parecoxib treated animals one week after tMCAo (p < 0.03). Cortical ADC values in the parecoxib group were markedly less increased on Day 8 (p < 0.01). Interestingly, the parecoxib treated rats were segregated into two subgroups, suggesting a responder vs. non-responder phenomenon. We found indications of mRNA up-regulation of IL-1beta, IL-6, TNF-alpha and COX-2, whereas COX-1 remained unaffected. Hippocampal granule cell BrdU incorporation was not affected by parecoxib treatment. Presence of ED-1+ activated microglia in the hippocampus was related to an increase in BrdU uptake in the DG. CONCLUSION: IP parecoxib administration during tMCAo was neuroprotective, as evidenced by a large reduction in mean infarct volume and a lower cortical ADC increment. Increased pro-inflammatory cytokine mRNA levels and hippocampal granule cell BrdU incorporation remained unaffected. [Abstract/Link to Full Text]

Wilkinson BL, Landreth GE
The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease.
J Neuroinflammation. 2006;330.
Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease. [Abstract/Link to Full Text]

Loeffler DA, Camp DM, Conant SB
Complement activation in the Parkinson's disease substantia nigra: an immunocytochemical study.
J Neuroinflammation. 2006;329.
BACKGROUND: Inflammatory processes are increased in the Parkinson's disease (PD) brain. The long-term use of nonsteroidal anti-inflammatory drugs has been associated, in retrospective studies, with decreased risk for PD, suggesting that inflammation may contribute to development of this disorder. The objective of this study was to determine the extent of complement activation, a major inflammatory mechanism, in PD. METHODS: Substantia nigra specimens from young normal subjects (n = 11-13), aged normal subjects (n = 24-28), and subjects with PD (n = 19-20), Alzheimer's disease (AD; n = 12-13), and dementia with Lewy bodies (DLB; n = 9) were stained for iC3b and C9, representing early- and late-stage complement activation, respectively. Numbers of iC3b+, C9+, and total melanized neurons in each section were counted in a blinded fashion. Nonparametric analyses were used to evaluate differences between groups and to evaluate correlations between complement staining, numbers of melanized neurons, and the duration of PD. RESULTS: Lewy bodies in both PD and DLB specimens stained for iC3b and C9. Staining was also prominent on melanized neurons. The percentage of iC3b+ neurons was significantly increased in PD vs. aged normal and AD specimens, and in young normal vs. aged normal specimens. C9 immunoreactivity was significantly increased in PD vs. AD specimens, but unlike iC3b, the increased C9 staining in PD and young normal specimens did not achieve statistical significance vs. aged normal specimens. iC3b and C9 staining in PD specimens was not correlated with the numbers of remaining melanized neurons, nor with the duration of PD. CONCLUSION: Complement activation occurs on Lewy bodies and melanized neurons in the PD substantia nigra. Early complement activation (iC3b) is increased on melanized neurons in PD vs. aged normal specimens, and late-stage complement activation (C9) also tends to increase. This latter finding suggests that complement activation may contribute to loss of dopaminergic neurons in some individuals with PD. Complement activation on melanized neurons appears to decrease with normal aging, suggesting a possible neuroprotective role for this process in the normal substantia nigra. [Abstract/Link to Full Text]

Moses GS, Jensen MD, Lue LF, Walker DG, Sun AY, Simonyi A, Sun GY
Secretory PLA2-IIA: a new inflammatory factor for Alzheimer's disease.
J Neuroinflammation. 2006;328.
Secretory phospholipase A2-IIA (sPLA2-IIA) is an inflammatory protein known to play a role in the pathogenesis of many inflammatory diseases. Although this enzyme has also been implicated in the pathogenesis of neurodegenerative diseases, there has not been a direct demonstration of its expression in diseased human brain. In this study, we show that sPLA2-IIA mRNA is up-regulated in Alzheimer's disease (AD) brains as compared to non-demented elderly brains (ND). We also report a higher percentage of sPLA2-IIA-immunoreactive astrocytes present in AD hippocampus and inferior temporal gyrus (ITG). In ITG, the majority of sPLA2-IIA-positive astrocytes were associated with amyloid beta (Abeta)-containing plaques. Studies with human astrocytes in culture demonstrated the ability of oligomeric Abeta1-42 and interleukin-1beta (IL-1beta) to induce sPLA2-IIA mRNA expression, indicating that this gene is among those induced by inflammatory cytokines. Since exogenous sPLA2-IIA has been shown to cause neuronal injury, understanding the mechanism(s) and physiological consequences of sPLA2-IIA upregulation in AD brain may facilitate the development of novel therapeutic strategies to inhibit the inflammatory responses and to retard the progression of the disease. [Abstract/Link to Full Text]

Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP
Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD.
J Neuroinflammation. 2006;327.
BACKGROUND: Microglia are associated with neuritic plaques in Alzheimer disease (AD) and serve as a primary component of the innate immune response in the brain. Neuritic plaques are fibrous deposits composed of the amyloid beta-peptide fragments (Abeta) of the amyloid precursor protein (APP). Numerous studies have shown that the immune cells in the vicinity of amyloid deposits in AD express mRNA and proteins for pro-inflammatory cytokines, leading to the hypothesis that microglia demonstrate classical (Th-1) immune activation in AD. Nonetheless, the complex role of microglial activation has yet to be fully explored since recent studies show that peripheral macrophages enter an "alternative" activation state. METHODS: To study alternative activation of microglia, we used quantitative RT-PCR to identify genes associated with alternative activation in microglia, including arginase I (AGI), mannose receptor (MRC1), found in inflammatory zone 1 (FIZZ1), and chitinase 3-like 3 (YM1). RESULTS: Our findings confirmed that treatment of microglia with anti-inflammatory cytokines such as IL-4 and IL-13 induces a gene profile typical of alternative activation similar to that previously observed in peripheral macrophages. We then used this gene expression profile to examine two mouse models of AD, the APPsw (Tg-2576) and Tg-SwDI, models for amyloid deposition and for cerebral amyloid angiopathy (CAA) respectively. AGI, MRC1 and YM1 mRNA levels were significantly increased in the Tg-2576 mouse brains compared to age-matched controls while TNFalpha and NOS2 mRNA levels, genes commonly associated with classical activation, increased or did not change, respectively. Only TNFalpha mRNA increased in the Tg-SwDI mouse brain. Alternative activation genes were also identified in brain samples from individuals with AD and were compared to age-matched control individuals. In AD brain, mRNAs for TNFalpha, AGI, MRC1 and the chitinase-3 like 1 and 2 genes (CHI3L1; CHI3L2) were significantly increased while NOS2 and IL-1beta mRNAs were unchanged. CONCLUSION: Immune cells within the brain display gene profiles that suggest heterogeneous, functional phenotypes that range from a pro-inflammatory, classical activation state to an alternative activation state involved in repair and extracellular matrix remodeling. Our data suggest that innate immune cells in AD may exhibit a hybrid activation state that includes characteristics of classical and alternative activation. [Abstract/Link to Full Text]

Cunningham TJ, Yao L, Oetinger M, Cort L, Blankenhorn EP, Greenstein JI
Secreted phospholipase A2 activity in experimental autoimmune encephalomyelitis and multiple sclerosis.
J Neuroinflammation. 2006;326.
BACKGROUND: There is increased interest in the contribution of the innate immune system to multiple sclerosis (MS), including the activity of acute inflammatory mediators. The purpose of this study was to test the involvement of systemic secreted phospholipase A2 (sPLA2) enzymes in experimental autoimmune encephalomyelitis (EAE), an MS model, and to determine if enzyme activity is elevated in MS patients. METHODS: A non-invasive urinary assay was developed in order to monitor enzymatically active sPLA2 levels in Dark Agouti rats after induction of EAE. Some Rats were treated with nonapeptide CHEC-9, an uncompetitive sPLA2 enzyme inhibitor, during the initial rise in urinary enzyme levels. Body weight and clinical EAE score were measured for 18 days post immunization (PI), after which the rats were sacrificed for H&E and myelin staining, and for ED-1 immunocytochemistry, the latter to quantify macrophages and activated microglia. The urinary sPLA2 assay was also applied to un-timed samples collected from a cross section of 44 MS patients and 14 healthy controls. RESULTS: Mean levels of enzymatically active sPLA2 in the urine increased following immunization and peaked between days 8-10 PI which was just prior to the onset of EAE symptoms. At this time, a transient attenuation of activity was detected in the urine of CHEC-9 treated rats consistent with the activity-dependent properties of the inhibitor. The peptide also reduced or abolished EAE symptoms compared to vehicle-injected controls. Histopathological changes in the spinal cords of the EAE rats correlated generally with clinical score including a significant reduction in ED-1+ cells after peptide treatment. Multiple Sclerosis patients also showed elevations in sPLA2 enzyme activity. Mean levels of sPLA2 were increased 6-fold in the urine of patients with active disease and 4-fold for patients in remission, regardless of immunomodulating therapy. CONCLUSION: The results suggest that sPLA2 enzymes, traditionally thought to be part the acute phase inflammatory response, are therapeutic targets for MS. [Abstract/Link to Full Text]

Cunningham TJ, Maciejewski J, Yao L
Inhibition of secreted phospholipase A2 by neuron survival and anti-inflammatory peptide CHEC-9.
J Neuroinflammation. 2006;325.
BACKGROUND: The nonapeptide CHEC-9 (CHEASAAQC), a putative inhibitor of secreted phospholipase A2 (sPLA2), has been shown previously to inhibit neuron death and aspects of the inflammatory response following systemic treatment of rats with cerebral cortex lesions. In this study, the properties of CHEC-9 inhibition of sPLA2 enzymes were investigated, using a venom-derived sPLA2 group I and the plasma of rats and humans as the sources of enzyme activity. The results highlight the advantages of inhibitors with uncompetitive properties for inflammatory disorders including those resulting in degeneration of neurons. METHODS: Samples of enzyme and plasma were reacted with 1-Palmitoyl-2-Pyrenedecanoyl Phosphatidylcholine, a sPLA2 substrate that forms phospholipid vesicles in aqueous solutions. Some of the plasma samples were collected from restrained peptide-treated rats in order to confirm the validity of the in vitro assays for extrapolation to in vivo effects of the peptide. The enzyme reactions were analyzed in terms of well-studied relationships between the degree of inhibition and the concentrations of different reactants. We also examined interactions between different components of the reaction mixture on native polyacrylamide gels. RESULTS: In all cases, the peptide showed the properties of an uncompetitive (or anti-competitive) enzyme inhibitor with Ki values less than 100 nanomolar. The electrophoresis experiments suggested CHEC-9 modifies the binding properties of the enzyme only in the presence of substrate, consistent with its classification as an uncompetitive inhibitor. Both the in vitro observations and the analysis of plasma samples from restrained rats injected with peptide suggest the efficacy of the peptide increases under conditions of high enzyme activity. CONCLUSION: Modeling studies by others have shown that uncompetitive inhibitors may be optimal for enzyme inhibition therapy because, unlike competitive inhibitors, they are not rendered ineffective by the accumulation of unmodified substrate. Such conditions likely apply to several instances of neuroinflammation where there are cascading increases in sPLA2s and their substrates, both systemically and in the CNS. Thus, the present results may explain the efficacy of CHEC-9 in vivo. [Abstract/Link to Full Text]

Jekabsone A, Mander PK, Tickler A, Sharpe M, Brown GC
Fibrillar beta-amyloid peptide Abeta1-40 activates microglial proliferation via stimulating TNF-alpha release and H2O2 derived from NADPH oxidase: a cell culture study.
J Neuroinflammation. 2006;324.
BACKGROUND: Alzheimer's disease is characterized by the accumulation of neuritic plaques, containing activated microglia and beta-amyloid peptides (Abeta). Fibrillar Abeta can activate microglia, resulting in production of toxic and inflammatory mediators like hydrogen peroxide, nitric oxide, and cytokines. We have recently found that microglial proliferation is regulated by hydrogen peroxide derived from NADPH oxidase. Thus, in this study, we investigated whether Abeta can stimulate microglial proliferation and cytokine production via activation of NADPH oxidase to produce hydrogen peroxide. METHODS: Primary mixed glial cultures were prepared from the cerebral cortices of 7-day-old Wistar rats. At confluency, microglial cells were isolated by tapping, replated, and treated either with or without Abeta. Hydrogen peroxide production by cells was measured with Amplex Red and peroxidase. Microglial proliferation was assessed under a microscope 0, 24 and 48 hours after plating. TNF-alpha and IL-1beta levels in the culture medium were assessed by ELISA. RESULTS: We found that 1 muM fibrillar (but not soluble) Abeta1-40 peptide induced microglial proliferation and caused release of hydrogen peroxide, TNF-alpha and IL-1beta from microglial cells. Proliferation was prevented by the NADPH oxidase inhibitor apocynin (10 microM), by the hydrogen peroxide-degrading enzyme catalase (60 U/ml), and by its mimetics EUK-8 and EUK-134 (20 microM); as well as by an antibody against TNF-alpha and by a soluble TNF receptor inhibitor. Production of TNF-alpha and IL-1beta, measured after 24 hours of Abeta treatment, was also prevented by apocynin, catalase and EUKs, but the early release (measured after 1 hour of Abeta treatment) of TNF-alpha was insensitive to apocynin or catalase. CONCLUSION: These results indicate that Abeta1-40-induced microglial proliferation is mediated both by microglial release of TNF-alpha and production of hydrogen peroxide from NADPH oxidase. This suggests that TNF-alpha and NADPH oxidase, and its products, are potential targets to prevent Abeta-induced inflammatory neurodegeneration. [Abstract/Link to Full Text]

Sheremata WA, Jy W, Delgado S, Minagar A, McLarty J, Ahn Y
Interferon-beta1a reduces plasma CD31+ endothelial microparticles (CD31+EMP) in multiple sclerosis.
J Neuroinflammation. 2006;323.
BACKGROUND: A correlation between plasma CD31+ endothelial microparticles (CD31+EMP) levels and clinical, as well as brain MRI activity, in multiple sclerosis (MS) patients has been previously reported. However, the effect(s) of treatment with interferon-beta1a (IFN-beta1a) on plasma levels of CD31+EMP has not been assessed. In a prospective study, we measured plasma CD31+EMP levels in 30 patients with relapsing-remitting MS. METHODS: Using flow cytometry, in a blinded study, we measured plasma CD31+EMP in 30 consecutive patients with relapsing-remitting MS (RRMS) prior to and 4, 12, 24 and 52 weeks after initiation of intramuscular therapy with interferon-beta1a (IFN-beta1a), 30 micrograms weekly. At each visit, clinical examination was performed and expanded disability status scale (EDSS) scores were assessed. RESULTS: Plasma levels of CD31+EMP were significantly reduced from 24 through 52 weeks following initiation of treatment with IFN-beta1a. CONCLUSION: Our data suggest that serial measurement of plasma CD31+EMP levels may be used as a surrogate marker of response to therapy with INF-beta1a. In addition, the decline in plasma levels of CD31+EMP further supports the concept that IFN-beta1a exerts stabilizing effect on the cerebral endothelial cells in pathogenesis of MS. [Abstract/Link to Full Text]

Canova C, Neal JW, Gasque P
Expression of innate immune complement regulators on brain epithelial cells during human bacterial meningitis.
J Neuroinflammation. 2006;322.
BACKGROUND: In meningitis, the cerebrospinal fluid contains high levels of innate immune molecules (e.g. complement) which are essential to ward off the infectious challenge and to promote the infiltration of phagocytes (neutrophils, monocytes). However, epithelial cells of either the ependymal layer, one of the established niche for adult neural stem cells, or of the choroid plexus may be extremely vulnerable to bystander attack by cytotoxic and cytolytic complement components. METHODS: In this study, we assessed the capacity of brain epithelial cells to express membrane-bound complement regulators (ie, CD35, CD46, CD55 and CD59) in vitro and in situ by immunostaining of control and meningitis human brain tissue sections. RESULTS: Double immunofluorescence experiments for ependymal cell markers (GFAP, S100, ZO-1, E-cadherin) and complement regulators indicated that the human ependymal cell line model was strongly positive for CD55, CD59 compared to weak stainings for CD46 and CD35. In tissues, we found that CD55 was weakly expressed in control choroid plexus and ependyma but was abundantly expressed in meningitis. Anti-CD59 stained both epithelia in apical location while increased CD59 staining was solely demonstrated in inflamed choroid plexus. CD46 and CD35 were not detected in control tissue sections. Conversely, in meningitis, the ependyma, subependyma and choroid plexus epithelia were strongly stained for CD46 and CD35. CONCLUSION: This study delineates for the first time the capacity of brain ependymal and epithelial cells to respond to and possibly sustain the innate complement-mediated inflammatory insult. [Abstract/Link to Full Text]

Maezawa I, Zaja-Milatovic S, Milatovic D, Stephen C, Sokal I, Maeda N, Montine TJ, Montine KS
Apolipoprotein E isoform-dependent dendritic recovery of hippocampal neurons following activation of innate immunity.
J Neuroinflammation. 2006;321.
BACKGROUND: Innate immune activation, including a role for cluster of differentiation 14/toll-like receptor 4 co-receptors (CD14/TLR-4) co-receptors, has been implicated in paracrine damage to neurons in several neurodegenerative diseases that also display stratification of risk or clinical outcome with the common alleles of the apolipoprotein E gene (APOE): APOE2, APOE3, and APOE4. Previously, we have shown that specific stimulation of CD14/TLR-4 with lipopolysaccharide (LPS) leads to greatest innate immune response by primary microglial cultures from targeted replacement (TR) APOE4 mice and greatest p38MAPK-dependent paracrine damage to neurons in mixed primary cultures and hippocampal slice cultures derived from TR APOE4 mice. In contrast, TR APOE2 astrocytes had the highest NF-kappaB activity and no neurotoxicity. Here we tested the hypothesis that direct activation of CD14/TLR-4 in vivo would yield different amounts of paracrine damage to hippocampal sector CA1 pyramidal neurons in TR APOE mice. METHODS: We measured in vivo changes in dendrite length in hippocampal CA1 neurons using Golgi staining and determined hippocampal apoE levels by Western blot. Neurite outgrowth of cultured primary neurons in response to astrocyte conditioned medium was assessed by measuring neuron length and branch number. RESULTS: Our results showed that TR APOE4 mice had slightly but significantly shorter dendrites at 6 weeks of age. Following exposure to intracerebroventricular LPS, there was comparable loss of dendrite length at 24 hr among the three TR APOE mice. Recovery of dendrite length over the next 48 hr was greater in TR APOE2 than TR APOE3 mice, while TR APOE4 mice had failure of dendrite regeneration. Cell culture experiments indicated that the enhanced neurotrophic effect of TR APOE2 was LDL related protein-dependent. CONCLUSION: The data indicate that the environment within TR APOE2 mouse hippocampus was most supportive of dendrite regeneration while that within TR APOE4 hippocampus failed to support dendrite regeneration in this model of reversible paracrine damage to neurons from innate immune activation, and suggest an explanation for the stratification of clinical outcome with APOE seen in several degenerative diseases or brain that are associated with activated innate immune response. [Abstract/Link to Full Text]

Esquifino AI, Cano P, Zapata A, Cardinali DP
Experimental allergic encephalomyelitis in pituitary-grafted Lewis rats.
J Neuroinflammation. 2006;320.
Treatment of susceptible rats with dopaminergic agonists that reduce prolactin release decreases both severity and duration of clinical signs of experimental allergic encephalomyelitis (EAE). To assess to what extent the presence of an ectopic pituitary (that produces an increase in plasma prolactin levels mainly derived from the ectopic gland) affects EAE, 39 male Lewis rats were submitted to pituitary grafting from littermate donors. Another group of 38 rats was sham-operated by implanting a muscle fragment similar in size to the pituitary graft. All rats received subcutaneous (s.c.) injections of complete Freund's adjuvant (CFA) plus spinal cord homogenate (SCH) and were monitored daily for clinical signs of EAE. Animals were killed by decapitation on days 1, 4, 7, 11 or 15 after immunization and plasma was collected for prolactin RIA. In a second experiment, 48 rats were immunized by s.c. injection of a mixture of SCH and CFA, and then received daily s.c. injections of bromocriptine (1 mg/kg) or saline. Groups of 8 animals were killed on days 8, 11 or 15 after immunization and plasma prolactin was measured. Only sham-operated rats exhibited clinical signs of the disease when assessed on day 15 after immunization. A progressive decrease in plasma prolactin levels was observed in pituitary-grafted rats, attaining a minimum 15 days after immunization, whereas plasma prolactin levels were increased during the course of the disease in sham-operated rats. Plasma prolactin levels were higher in pituitary-grafted rats than in sham-operated rats 1 day after immunization, but lower on days 7, 11 and 15 after immunogen injection. Further supporting a correlation of suppressed prolactin levels with absence of clinical signs of EAE, rats that were administered the dopaminergic agonist bromocriptine showed very low plasma prolactin levels and did not exhibit any clinical sign of EAE. These results indicate that low circulating prolactin levels coincide with absence of clinical signs of EAE in Lewis rats. [Abstract/Link to Full Text]

Takano-Maruyama M, Ohara Y, Asakura K, Okuwa T
Leader (L) and L* proteins of Theiler's murine encephalomyelitis virus (TMEV) and their regulation of the virus' biological activities.
J Neuroinflammation. 2006;319.
Theiler's murine encephalomyelitis virus (TMEV) is divided into two subgroups on the basis of their different biological activities. GDVII subgroup strains produce fatal poliomyelitis in mice without virus persistence or demyelination. In contrast, TO subgroup strains induce demyelinating disease with virus persistence in the spinal cords of weanling mice. Two proteins, whose open reading frames are located in the N-terminus of the polyprotein, recently have been reported to be important for TMEV biological activities. One is leader (L) protein and is processed from the most N-terminus of the polyprotein; its function is still unknown. Although the homology of capsid proteins between DA (a representative strain of TO subgroup) and GDVII strains is over 94% at the amino acid level, that of L shows only 85%. Therefore, L is thought to be a key protein for the subgroup-specific biological activities of TMEV. Various studies have demonstrated that L plays important roles in the escape of virus from host immune defenses in the early stage of infection. The second protein is a 17-18 kDa protein, L*, which is synthesized out-of-frame with the polyprotein. Only TO subgroup strains produce L* since GDVII subgroup strains have an ACG rather than AUG at the initiation site and therefore do not synthesize L*. 'Loss and gain of function' experiments demonstrate that L* is essential for virus growth in macrophages, a target cell for TMEV persistence. L* also has been demonstrated to be necessary for TMEV persistence and demyelination. Further analysis of L and L* will help elucidate the pathomechanism(s) of TMEV-induced demyelinating disease. [Abstract/Link to Full Text]

Previti ML, Zhang W, Van Nostrand WE
Dexamethasone diminishes the pro-inflammatory and cytotoxic effects of amyloid beta-protein in cerebrovascular smooth muscle cells.
J Neuroinflammation. 2006;318.
BACKGROUND: Cerebrovascular deposition of fibrillar amyloid beta-protein (Abeta), a condition known as cerebral amyloid angiopathy (CAA), is a prominent pathological feature of Alzheimer's disease (AD) and related disorders. Accumulation of cerebral vascular fibrillar Abeta is implicated in promoting local neuroinflammation, causes marked degeneration of smooth muscle cells, and can lead to loss of vessel wall integrity with hemorrhage. However, the relationship between cerebral vascular fibrillar Abeta-induced inflammatory responses and localized cytotoxicity in the vessel wall remains unclear.Steroidal-based anti-inflammatory agents, such as dexamethasone, have been reported to reduce neuroinflammation and hemorrhage associated with CAA. Nevertheless, the basis for the beneficial effects of steroidal anti-inflammatory drug treatment with respect to local inflammation and hemorrhage in CAA is unknown. The cultured human cerebrovascular smooth muscle (HCSM) cell system is a useful in vitro model to study the pathogenic effects of Abeta in CAA. To examine the possibility that dexamethasone may influence CAA-induced cellular pathology, we investigated the effect of this anti-inflammatory agent on inflammatory and cytotoxic responses to Abeta by HCSM cells. METHODS: Primary cultures of HCSM cells were treated with or without pathogenic Abeta in the presence or absence of the steroidal anti-inflammatory agent dexamethasone or the non-steroidal anti-inflammatory drugs indomethacin or ibuprofen. Cell viability was measured using a fluorescent live cell/dead cell assay. Quantitative immunoblotting was performed to determine the amount of cell surface Abeta and amyloid beta-protein precursor (AbetaPP) accumulation and loss of vascular smooth cell alpha actin. To assess the extent of inflammation secreted interleukin-6 (IL-6) levels were measured by ELISA and active matrix metalloproteinase-2 (MMP-2) levels were evaluated by gelatin zymography. RESULTS: Pathogenic Abeta-induced HCSM cell death was markedly reduced by dexamethasone but was unaffected by ibuprofen or indomethacin. Dexamethasone had no effect on the initial pathogenic effects of Abeta including HCSM cell surface binding, cell surface fibril-like assembly, and accumulation of cell surface AbetaPP. However, later stage pathological consequences of Abeta treatment associated with inflammation and cell degeneration including increased levels of IL-6, activation of MMP-2, and loss of HCSM alpha actin were significantly diminished by dexamethasone but not by indomethacin or ibuprofen. CONCLUSION: Our results suggest that although dexamethasone has no appreciable consequence on HCSM cell surface fibrillar Abeta accumulation it effectively reduces the subsequent pathologic responses including elevated levels of IL-6, MMP-2 activation, and depletion of HCSM alpha actin. Dexamethasone, unlike indomethacin or ibuprofen, may diminish these pathological processes that likely contribute to inflammation and loss of vessel wall integrity leading to hemorrhage in CAA. [Abstract/Link to Full Text]

Das P, Smithson LA, Price RW, Holloway VM, Levites Y, Chakrabarty P, Golde TE
Interleukin-1 receptor 1 knockout has no effect on amyloid deposition in Tg2576 mice and does not alter efficacy following Abeta immunotherapy.
J Neuroinflammation. 2006;317.
BACKGROUND: Microglial activation has been proposed to facilitate clearance of amyloid beta protein (Abeta) from the brain following Abeta immunotherapy in amyloid precursor protein (APP) transgenic mice. Interleukin-1 receptor 1 knockout (IL-1 R1-/-) mice are reported to exhibit blunted inflammatory responses to injury. To further define the role of IL-1-mediated inflammatory responses and microglial activation in this paradigm, we examined the efficacy of passive Abeta immunotherapy in Tg2576 mice crossed into the IL-1 R1-/- background. In addition, we examined if loss of IL-1 R1-/- modifies Abeta deposition in the absence of additional manipulations. METHODS: We passively immunized Tg2576 mice crossed into the IL-1 R1-/- background (APP/IL-1 R1-/- mice) with an anti-Abeta1-16 mAb (mAb9, IgG2a) that we previously showed could attenuate Abeta deposition in Tg2576 mice. We also examined whether the IL-1 R1 knockout background modifies Abeta deposition in untreated mice. Biochemical and immunohistochemical Abeta loads and microglial activation was assessed. RESULTS: Passive immunization with anti-Abeta mAb was effective in reducing plaque load in APP/IL-1 R1-/- mice when the immunization was started prior to significant plaque deposition. Similar to previous studies, immunization was not effective in older APP/IL-1 R1-/- mice or IL-1 R1 sufficient wild type Tg2576 mice. Our analysis of Abeta deposition in the untreated APP/IL-1 R1-/- mice did not show differences on biochemical Abeta loads during normal aging of these mice compared to IL-1 R1 sufficient wild type Tg2576 mice. CONCLUSION: We find no evidence that the lack of the IL-1 R1 receptor influences either Abeta deposition or the efficacy of passive immunotherapy. Such results are consistent with other studies in Tg2576 mice that suggest microglial activation may not be required for efficacy in passive immunization approaches. [Abstract/Link to Full Text]

Zeinstra E, Wilczak N, Chesik D, Glazenburg L, Kroese FG, De Keyser J
Simvastatin inhibits interferon-gamma-induced MHC class II up-regulation in cultured astrocytes.
J Neuroinflammation. 2006;316.
Based on their potent anti-inflammatory properties and a preliminary clinical trial, statins (HMG-CoA reductase inhibitors) are being studied as possible candidates for multiple sclerosis (MS) therapy. The pathogenesis of MS is unclear. One theory suggests that the development of autoimmune lesions in the central nervous system may be due to a failure of endogenous inhibitory control of MHC class II expression on astrocytes, allowing these cells to adapt an interferon (IFN)-gamma-induced antigen presenting phenotype. By using immunocytochemistry in cultured astrocytes derived from newborn Wistar rats we found that simvastatin at nanomolar concentrations inhibited, in a dose-response fashion, up to 70% of IFN-gamma-induced MHC class II expression. This effect was reversed by the HMG-CoA reductase product mevalonate. Suppression of the antigen presenting function of astrocytes might contribute to the beneficial effects of statins in MS. [Abstract/Link to Full Text]

Lin HW, Basu A, Druckman C, Cicchese M, Krady JK, Levison SW
Astrogliosis is delayed in type 1 interleukin-1 receptor-null mice following a penetrating brain injury.
J Neuroinflammation. 2006;315.
The cytokines IL-1alpha and IL-1beta are induced rapidly after insults to the CNS, and their subsequent signaling through the type 1 IL-1 receptor (IL-1R1) has been regarded as essential for a normal astroglial and microglial/macrophage response. To determine whether abrogating signaling through the IL-1R1 will alter the cardinal astrocytic responses to injury, we analyzed molecules characteristic of activated astrocytes in response to a penetrating stab wound in wild type mice and mice with a targeted deletion of IL-1R1. Here we show that after a stab wound injury, glial fibrillary acidic protein (GFAP) induction on a per cell basis is delayed in the IL-1R1-null mice compared to wild type counterparts. However, the induction of chondroitin sulfate proteoglycans, tenascin, S-100B as well as glutamate transporter proteins, GLAST and GLT-1, and glutamine synthetase are independent of IL-1RI signaling. Cumulatively, our studies on gliosis in the IL-1R1-null mice indicate that abrogating IL-1R1 signaling delays some responses of astroglial activation; however, many of the important neuroprotective adaptations of astrocytes to brain trauma are preserved. These data recommend the continued development of therapeutics to abrogate IL-1R1 signaling to treat traumatic brain injuries. However, astroglial scar related proteins were induced irrespective of blocking IL-1R1 signaling and thus, other therapeutic strategies will be required to inhibit glial scarring. [Abstract/Link to Full Text]

Seabrook TJ, Jiang L, Thomas K, Lemere CA
Boosting with intranasal dendrimeric Abeta1-15 but not Abeta1-15 peptide leads to an effective immune response following a single injection of Abeta1-40/42 in APP-tg mice.
J Neuroinflammation. 2006;314.
BACKGROUND: Immunotherapy for Alzheimer's disease (AD) is emerging as a potential treatment. However, a clinical trial (AN1792) was halted after adverse effects occurred in a small subset of subjects, which may have been caused by a T cell-mediated immunological response. In general, aging limits the humoral immune response, therefore, immunogens and vaccination regimes are required that induce a strong antibody response with less potential for an adverse immune response. METHOD: In the current study, we immunized both wildtype and J20 APP-tg mice with a priming injection of Abeta1-40/42, followed by multiple intranasal boosts with the novel immunogen dAbeta1-15 (16 copies of Abeta1-15 on a lysine tree), Abeta1-15 peptide or Abeta1-40/42 full length peptide. RESULTS: J20 APP-tg mice primed with Abeta1-40/42 subcutaneously and subsequently boosted intranasally with Abeta1-15 peptide did not generate a cellular or humoral immune response. In contrast, J20 APP-tg mice boosted intranasally with dAbeta1-15 or full length Abeta1-40/42 produced high levels of anti-Abeta antibodies. Splenocyte proliferation was minimal in mice immunized with dAbeta1-15. Wildtype littermates of the J20 APP-tg mice produced higher amounts of anti-Abeta antibodies compared to APP-tg mice but also had low T cell proliferation. The anti-Abeta antibodies were mainly composed of IgG2b and directed to an epitope within the Abeta1-7 region, regardless of the immunogen. Examination of the brain showed a significant reduction in Abeta plaque burden in the J20 APP-tg mice producing antibodies compared to controls. Biochemically, Abeta40 or Abeta42 were also reduced in brain homogenates and elevated in plasma but the changes did not reach significance. CONCLUSION: Our results demonstrate that priming with full length Abeta40/42 followed by boosting with dAbeta1-15 but not Abeta1-15 peptide led to a robust humoral immune response with a minimal T cell response in J20 APP-tg mice. In addition, Abeta plaque burden was reduced in mice producing anti-Abeta antibodies. Interestingly, wildtype mice produced higher levels of anti-Abeta antibodies, indicating that immune tolerance may be present in J20 APP-tg mice. Together, these data suggest that dAbeta1-15 but not Abeta1-15 peptide may be useful as a boosting immunogen in an AD vaccination regime. [Abstract/Link to Full Text]

Skundric DS, Cai J, Cruikshank WW, Gveric D
Production of IL-16 correlates with CD4+ Th1 inflammation and phosphorylation of axonal cytoskeleton in multiple sclerosis lesions.
J Neuroinflammation. 2006;313.
BACKGROUND: Multiple sclerosis (MS) is a central nervous system-specific autoimmune, demyelinating and neurodegenerative disease. Infiltration of lesions by autoaggressive, myelin-specific CD4+Th1 cells correlates with clinical manifestations of disease. The cytokine IL-16 is a CD4+ T cell-specific chemoattractant that is biased towards CD4+ Th1 cells. IL-16 precursor is constitutively expressed in lymphocytes and during CD4+ T cell activation; active caspase-3 cleaves and releases C-terminal bioactive IL-16. Previously, we used an animal model of MS to demonstrate an important role for IL-16 in regulation of autoimmune inflammation and subsequent axonal damage. This role of IL-16 in MS is largely unexplored. Here we examine the regulation of IL-16 in relation to CD4+ Th1 infiltration and inflammation-related changes of axonal cytoskeleton in MS lesions. METHODS: We measured relative levels of IL-16, active caspase-3, T-bet, Stat-1 (Tyr 701), and phosphorylated NF(M+H), in brain and spinal cord lesions from MS autopsies, using western blot analysis. We examined samples from 39 MS cases, which included acute, subacute and chronic lesions, as well as adjacent, normal-appearing white and grey matter. All samples were taken from patients with relapsing remitting clinical disease. We employed two-color immunostaining and confocal microscopy to identify phenotypes of IL-16-containing cells in frozen tissue sections from MS lesions. RESULTS: We found markedly increased levels of pro- and secreted IL-16 (80 kD and 22 kD, respectively) in MS lesions compared to controls. Levels of IL-16 peaked in acute, diminished in subacute, and were elevated again in chronic active lesions. Compared to lesions, lower but still appreciable IL-6 levels were measured in normal-appearing white matter adjacent to active lesions. Levels of IL-16 corresponded to increases in active-caspase-3, T-bet and phosphorylated Stat-1. In MS lesions, we readily observed IL-16 immunoreactivity confined to infiltrating CD3+, T-bet+ and active caspase-3+ mononuclear cells. CONCLUSION: We present evidence suggesting that IL-16 production occurs in MS lesions. We show correlations between increased levels of secreted IL-16, CD4+ Th1 cell inflammation, and phosphorylation of axonal cytoskeleton in MS lesions. Overall, the data suggest a possible role for IL-16 in regulation of inflammation and of subsequent changes in the axonal cytoskeleton in MS. [Abstract/Link to Full Text]

Jatana M, Giri S, Ansari MA, Elango C, Singh AK, Singh I, Khan M
Inhibition of NF-kappaB activation by 5-lipoxygenase inhibitors protects brain against injury in a rat model of focal cerebral ischemia.
J Neuroinflammation. 2006;312.
BACKGROUND: Stroke is one of the leading causes of death worldwide and a major cause of morbidity and mortality in the United States of America. Brain ischemia-reperfusion (IR) triggers a complex series of biochemical events including inflammation. Leukotrienes derived from 5-lipoxygenase (5-LOX) cause inflammation and are thus involved in the pathobiology of stroke injury. METHODS: To test the neuroprotective efficacy of 5-LOX inhibition in a rat model of focal cerebral IR, ischemic animals were either pre- or post-treated with a potent selective 5-LOX inhibitor, (N- [3-[3-(-fluorophenoxy) phenyl]-1-methyl-2-propenyl]-N-hydroxyurea (BW-B 70C). They were evaluated at 24 h after reperfusion for brain infarction, neurological deficit score, and the expression of 5-LOX. Furthermore, the mechanism and the anti-inflammatory potential of BW-B 70C in the regulation of nuclear factor kappa B (NF-kappaB) and inflammatory inducible nitric oxide synthase (iNOS) were investigated both in vivo and in vitro. RESULTS AND DISCUSSION: Both pre- and post-treatment with BW-B 70C reduced infarctions and improved neurological deficit scores. Immunohistochemical study of brain sections showed IR-mediated increased expression of 5-LOX in the neurons and microglia. BW-B 70C down-regulated 5-LOX and inhibited iNOS expression by preventing NF-kappaB activation. Two other structurally different 5-LOX inhibitors were also administered post IR: caffeic acid and 2,3,5-trimethyl-6-[12-hydroxy-5,10-dodecadiynyl]-1,4-benzoquinone (AA-861). As with BW-B 70C, they provided remarkable neuroprotection. Furthermore, in vitro, BW-B 70C inhibited lipopolysaccharide (LPS) mediated nitric oxide production, iNOS induction and NF-kappaB activation in the BV2 microglial cell line. Treating rat primary microglia with BW-B70C confirmed blockage of LPS-mediated translocation of the p65 subunit of NF-kappaB from cytosol to nucleus. CONCLUSION: The study demonstrates the neuroprotective potential of 5-LOX inhibition through down-regulation of NF-kappaB in a rat model of experimental stroke. [Abstract/Link to Full Text]

Carty NC, Wilcock DM, Rosenthal A, Grimm J, Pons J, Ronan V, Gottschall PE, Gordon MN, Morgan D
Intracranial administration of deglycosylated C-terminal-specific anti-Abeta antibody efficiently clears amyloid plaques without activating microglia in amyloid-depositing transgenic mice.
J Neuroinflammation. 2006;311.
BACKGROUND: Antibodies against the Ass peptide clear Ass deposits when injected intracranially. Deglycosylated antibodies have reduced effector functions compared to their intact counterparts, potentially avoiding immune activation. METHODS: Deglycosylated or intact C-terminal specific high affinity anti-Abeta antibody (2H6) were intracranially injected into the right frontal cortex and hippocampus of amyloid precursor protein (APP) transgenic mice. The untreated left hemisphere was used to normalize for the extent of amyloid deposition present in each mouse. Control transgenic mice were injected with an antibody against a drosophila-specific protein (amnesiac). Tissues were examined for brain amyloid deposition and microglial responses 3 days after the injection. RESULTS: The deglycosylated 2H6 antibody had lower affinity for several murine Fcgamma receptors and human complement than intact 2H6 without a change in affinity for Ass. Immunohistochemistry for Abeta and thioflavine-S staining revealed that both diffuse and compact deposits were reduced by both antibodies. In animals treated with the intact 2H6 antibody, a significant increase in Fcgamma-receptor II/III immunostaining was observed compared to animals treated with the control IgG antibody. No increase in Fcgamma-receptor II/III was found with the deglycosylated 2H6 antibody. Immunostaining for the microglial activation marker CD45 demonstrated a similar trend. CONCLUSION: These findings suggest that the deglycosylated 2H6 is capable of removing both compact and diffuse plaques without activating microglia. Thus, antibodies with reduced effector functions may clear amyloid without concomitant immune activation when tested as immunotherapy for Alzheimer's disease. [Abstract/Link to Full Text]

Maezawa I, Maeda N, Montine TJ, Montine KS
Apolipoprotein E-specific innate immune response in astrocytes from targeted replacement mice.
J Neuroinflammation. 2006;310.
BACKGROUND: Inheritance of the three different alleles of the human apolipoprotein (apo) E gene (APOE) are associated with varying risk or clinical outcome from a variety of neurologic diseases. ApoE isoform-specific modulation of several pathogenic processes, in addition to amyloid beta metabolism in Alzheimer's disease, have been proposed: one of these is innate immune response by glia. Previously we have shown that primary microglia cultures from targeted replacement (TR) APOE mice have apoE isoform-dependent innate immune activation and paracrine damage to neurons that is greatest with TR by the epsilon4 allele (TR APOE4) and that derives from p38 mitogen-activated protein kinase (p38MAPK) activity. METHODS: Primary cultures of TR APOE2, TR APOE3 and TR APOE4 astrocytes were stimulated with lipopolysaccharide (LPS). ApoE secretion, cytokine production, and nuclear factor-kappa B (NF-kappaB) subunit activity were measured and compared. RESULTS: Here we showed that activation of primary astrocytes from TR APOE mice with LPS led to TR APOE-dependent differences in cytokine secretion that were greatest in TR APOE2 and that were associated with differences in NF-kappaB subunit activity. CONCLUSION: Our results suggest that LPS activation of innate immune response in TR APOE glia results in opposing outcomes from microglia and astrocytes as a result of TR APOE-dependent activation of p38MAPK or NF-kappaB signaling in these two cell types. [Abstract/Link to Full Text]

Croisier E, Moran LB, Dexter DT, Pearce RK, Graeber MB
Correction: Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition.
J Neuroinflammation. 2006;39. [Abstract/Link to Full Text]

Jauneau AC, Ischenko A, Chatagner A, Benard M, Chan P, Schouft MT, Patte C, Vaudry H, Fontaine M
Interleukin-1beta and anaphylatoxins exert a synergistic effect on NGF expression by astrocytes.
J Neuroinflammation. 2006;38.
C3a and C5a anaphylatoxins are proinflammatory polypeptides released during complement activation. They exert their biological activities through interaction with two G protein-coupled receptors named C3aR and C5aR, respectively. In the brain, these receptors are expressed on glial cells, and some recent data have suggested that anaphylatoxins could mediate neuroprotection. In this study, we used RT-PCR and ribonuclease protection assays (RPA) to investigate the role of anaphylatoxins on neurotrophin expression by the human glioblastoma cell line T98G and by rat astrocytes. Our data show that for both cell types, anaphylatoxins upregulate expression of NGF mRNA. This response depended on a G protein-coupled pathway since pre-treatment of cells with pertussis toxin (PTX) completely blocked NGF mRNA increases. This effect was anaphylatoxin-specific since pre-incubation with anti-C3a or anti-C5aR antibodies abolished the effects of C3a and C5a, respectively. The regulation of NGF mRNA by anaphylatoxins was not accompanied by translation into protein expression, but there was a significant synergic effect of anaphylatoxins/IL-1b costimulation. Our demonstration of involvement of anaphylatoxins in the NGF release process by astrocytes suggests that C3a and C5a could modulate neuronal survival in the CNS. [Abstract/Link to Full Text]

Bate C, Kempster S, Last V, Williams A
Interferon-gamma increases neuronal death in response to amyloid-beta1-42.
J Neuroinflammation. 2006;37.
BACKGROUND: Alzheimer's disease is a neurodegenerative disorder characterized by a progressive cognitive impairment, the consequence of neuronal dysfunction and ultimately the death of neurons. The amyloid hypothesis proposes that neuronal damage results from the accumulation of insoluble, hydrophobic, fibrillar peptides such as amyloid-beta1-42. These peptides activate enzymes resulting in a cascade of second messengers including prostaglandins and platelet-activating factor. Apoptosis of neurons is thought to follow as a consequence of the uncontrolled release of second messengers. Biochemical, histopathological and genetic studies suggest that pro-inflammatory cytokines play a role in neurodegeneration during Alzheimer's disease. In the current study we examined the effects of interferon (IFN)-gamma, tumour necrosis factor (TNF)alpha, interleukin (IL)-1beta and IL-6 on neurons. METHODS: Primary murine cortical or cerebellar neurons, or human SH-SY5Y neuroblastoma cells, were grown in vitro. Neurons were treated with cytokines prior to incubation with different neuronal insults. Cell survival, caspase-3 activity (a measure of apoptosis) and prostaglandin production were measured. Immunoblots were used to determine the effects of cytokines on the levels of cytoplasmic phospholipase A2 or phospholipase C gamma-1. RESULTS: While none of the cytokines tested were directly neurotoxic, pre-treatment with IFN-gamma sensitised neurons to the toxic effects of amyloid-beta1-42 or HuPrP82-146 (a neurotoxic peptide found in prion diseases). The effects of IFN-gamma were seen on cortical and cerebellar neurons, and on SH-SY5Y neuroblastoma cells. However, pre-treatment with IFN-gamma did not affect the sensitivity to neurons treated with staurosporine or hydrogen peroxide. Pre-treatment with IFN-gamma increased the levels of cytoplasmic phospholipase A2 in SH-SY5Y cells and increased prostaglandin E2 production in response to amyloid-beta1-42. CONCLUSION: Treatment of neuronal cells with IFN-gamma increased neuronal death in response to amyloid-beta1-42 or HuPrP82-146. IFN-gamma increased the levels of cytoplasmic phospholipase A2 in cultured neuronal cells and increased expression of cytoplasmic phospholipase A2 was associated with increased production of prostaglandin E2 in response to amyloid-beta1-42 or HuPrP82-146. Such observations suggest that IFN-gamma produced within the brain may increase neuronal loss in Alzheimer's disease. [Abstract/Link to Full Text]

Vijitruth R, Liu M, Choi DY, Nguyen XV, Hunter RL, Bing G
Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson's disease.
J Neuroinflammation. 2006;36.
BACKGROUND: Accumulating evidence suggests that inflammation plays an important role in the progression of Parkinson's disease (PD). Among many inflammatory factors found in the PD brain, cyclooxygenase (COX), specifically the inducible isoform, COX-2, is believed to be a critical enzyme in the inflammatory response. Induction of COX-2 is also found in an experimental model of PD produced by administration of 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). METHOD: COX-2-deficient mice or C57BL/6 mice were treated with MPTP to investigate the effects of COX-2 deficiency or by using various doses of valdecoxib, a specific COX-2 inhibitor, which induces inhibition of COX-2 on dopaminergic neuronal toxicity and locomotor activity impairment. Immunohistochemistry, stereological cell counts, immunoblotting, an automated spontaneous locomotor activity recorder and rotarod behavioral testing apparatus were used to assess microglial activation, cell loss, and behavioral impairments. RESULTS: MPTP reduced tyrosine hydroxylase (TH)-positive cell counts in the substantia nigra pars compacta (SNpc); total distance traveled, vertical activity, and coordination on a rotarod; and increased microglia activation. Valdecoxib alleviated the microglial activation, the loss of TH-positive cells and the decrease in open field and vertical activity. COX-2 deficiency attenuated MPTP-induced microglial activation, degeneration of TH-positive cells, and loss of coordination. CONCLUSION: These results indicate that reducing COX-2 activity can mitigate the secondary and progressive loss of dopaminergic neurons as well as the motor deficits induced by MPTP, possibly by suppression of microglial activation in the SNpc. [Abstract/Link to Full Text]

Griffin WS, Liu L, Li Y, Mrak RE, Barger SW
Interleukin-1 mediates Alzheimer and Lewy body pathologies.
J Neuroinflammation. 2006;35.
BACKGROUND: Clinical and neuropathological overlap between Alzheimer's (AD) and Parkinson's disease (PD) is now well recognized. Such cases of concurrent AD and Lewy body disease (AD/LBD) show neuropathological changes that include Lewy bodies (alpha-synuclein aggregates), neuritic amyloid plaques, and neurofibrillary tangles (hyperphosphorylated tau aggregates). The co-occurrence of these clinical and neuropathological changes suggests shared pathogenic mechanisms in these diseases, previously assumed to be distinct. Glial activation, with overexpression of interleukin-1 (IL-1) and other proinflammatory cytokines, has been increasingly implicated in the pathogenesis of both AD and PD. METHODS: Rat primary cultures of microglia and cortical neurons were cultured either separately or as mixed cultures. Microglia or cocultures were treated with a secreted fragment (sAPPalpha) of the beta-amyloid precursor protein (betaAPP). Neurons were treated with IL-1beta or conditioned medium from sAPPalpha-activated microglia, with or without IL-1 receptor antagonist. Slow-release pellets containing either IL-1beta or bovine serum albumin (control) were implanted in cortex of rats, and mRNA for various neuropathological markers was analyzed by RT-PCR. Many of the same markers were assessed in tissue sections from human cases of AD/LBD. RESULTS: Activation of microglia with sAPPalpha resulted in a dose-dependent increase in secreted IL-1beta. Cortical neurons treated with IL-1beta showed a dose-dependent increase in sAPPalpha release, an effect that was enhanced in the presence of microglia. IL-1beta also elevated the levels of alpha-synuclein, activated MAPK-p38, and phosphorylated tau; a concomitant decrease in levels of synaptophysin occurred. Delivery of IL-1beta by slow-release pellets elevated mRNAs encoding alpha-synuclein, betaAPP, tau, and MAPK-p38 compared to controls. Finally, human cases of AD/LBD showed colocalization of IL-1-expressing microglia with neurons that simultaneously overexpressed betaAPP and contained both Lewy bodies and neurofibrillary tangles. CONCLUSION: Our findings suggest that IL-1 drives production of substrates necessary for formation of the major neuropathological changes characteristic of AD/LBD. [Abstract/Link to Full Text]

Minghetti L, Greco A, Puopolo M, Combrinck M, Warden D, Smith AD
Peripheral reductive capacity is associated with cognitive performance and survival in Alzheimer's disease.
J Neuroinflammation. 2006;34.
BACKGROUND: Oxidative stress is believed to be an early event and a key factor in Alzheimer's disease (AD) pathogenesis and progression. In spite of an intensive search for surrogate markers to monitor changes related to oxidative stress in the brain, there is as yet no consensus about which markers to use in clinical studies. The measurement of peripheral anti-oxidants is an alternative way of evaluating the involvement of oxidative stress in the course of the disease. Given the complexity of peripheral anti-oxidant defence, variations in the levels of individual anti-oxidant species may not fully reflect the overall capacity to fight oxidant conditions. We therefore chose to evaluate the total reductive capacity (herein defined as anti-oxidant capacity, AOC) in serum from control subjects and AD patients in order to study the association between peripheral anti-oxidant defence, cognitive impairment and patient survival. METHODS: We measured the levels of AOC in serum samples from 26 cognitively normal controls and 25 AD patients (12 post-mortem confirmed) who completed the Cambridge Cognitive Assessment. Cognitive decline was assessed in a subgroup of 19 patients who underwent a second cognitive assessment 2 years after the initial visit. RESULTS: Serum AOC levels were lower in AD patients than in controls and were correlated with their cognitive test scores, although AOC levels were unrelated to cognitive decline assessed two years later. On the other hand, AOC levels were predictive of the length of patients' survival, with higher levels giving longer survival. CONCLUSION: This study indicates that peripheral anti-oxidant defences are depleted in AD patients. The results suggest that serum AOC is a good index of the general health status and prognosis of patients but does not necessarily reflect the extent to which vulnerable neuronal populations are protected from oxidant processes. Further studies are required to establish whether peripheral AOC measurements may be useful in identifying asymptomatic individuals or those with early symptoms at high risk of developing significant cognitive impairment or dementia. [Abstract/Link to Full Text]

Laporte V, Ait-Ghezala G, Volmar CH, Mullan M
CD40 deficiency mitigates Alzheimer's disease pathology in transgenic mouse models.
J Neuroinflammation. 2006;33.
We have previously shown that transgenic mice carrying a mutant human APP but deficient in CD40L, display a decrease in astrocytosis and microgliosis associated with a lower amount of deposited Abeta. Furthermore, an anti-CD40L treatment causes a diminution of Abeta pathology in the brain and an improved performance in several cognitive tasks in the double transgenic PSAPP mouse model. Although these data suggest a potential role for CD40L in Alzheimer's disease pathology in transgenic mice they do not cast light on whether this effect is due to inhibition of signaling via CD40 or whether it is due to the mitigation of some other unknown role of CD40L. In the present report we have generated APP and PSAPP mouse models with a disrupted CD40 gene and compared the pathological features (such as amyloid burden, astrocytosis and microgliosis that are typical of Alzheimer's disease-like pathology in these transgenic mouse strains) with appropriate controls. We find that all these features are reduced in mouse models deficient for CD40 compared with their littermates where CD40 is present. These data suggest that CD40 signaling is required to allow the full repertoire of AD-like pathology in these mice and that inhibition of the CD40 signaling pathway is a potential therapeutic strategy in Alzheimer's disease. [Abstract/Link to Full Text]


Recent Articles in Journal of Vision

Brascamp JW, Knapen TH, Kanai R, van Ee R, van den Berg AV
Flash suppression and flash facilitation in binocular rivalry.
J Vis. 2007;7(12):12.1-12.
We show that previewing one half image of a binocular rivalry pair can cause it to gain initial dominance when the other half is added, a novel phenomenon we term flash facilitation. This is the converse of a known effect called flash suppression, where the previewed image becomes suppressed upon rivalrous presentation. The exact effect of previewing an image depends on both the duration and the contrast of the prior stimulus. Brief, low-contrast prior stimuli facilitate, whereas long, high-contrast ones suppress. These effects have both an eye-based component and a pattern-based component. Our results suggest that, instead of reflecting two unrelated mechanisms, both facilitation and suppression are manifestations of a single process that occurs progressively during presentation of the prior stimulus. The distinction between the two phenomena would then lie in the extent to which the process has developed during prior stimulation. This view is consistent with a neural model previously proposed to account for perceptual stabilization of ambiguous stimuli, suggesting a relation between perceptual stabilization and the present phenomena. [Abstract/Link to Full Text]

Tavassoli A, van der Linde I, Bovik AC, Cormack LK
Orientation anisotropies in visual search revealed by noise.
J Vis. 2007;7(12):11.1-8.
The human visual system is remarkably adept at finding objects of interest in cluttered visual environments, a task termed visual search. Because the human eye is highly foveated, it accomplishes this by making many discrete fixations linked by rapid eye movements called saccades. In such naturalistic tasks, we know very little about how the brain selects saccadic targets (the fixation loci). In this paper, we use a novel technique akin to psychophysical reverse correlation and stimuli that emulate the natural visual environment to measure observers' ability to locate a low-contrast target of unknown orientation. We present three main discoveries. First, we provide strong evidence for saccadic selectivity for spatial frequencies close to the target's central frequency. Second, we demonstrate that observers have distinct, idiosyncratic biases to certain orientations in saccadic programming, although there were no priors imposed on the target's orientation. These orientation biases cover a subset of the near-cardinal (horizontal/vertical) and near-oblique orientations, with orientations near vertical being the most common across observers. Further, these idiosyncratic biases were stable across time. Third, within observers, very similar biases exist for foveal target detection accuracy. These results suggest that saccadic targeting is tuned for known stimulus dimensions (here, spatial frequency) and also has some preference or default tuning for uncertain stimulus dimensions (here, orientation). [Abstract/Link to Full Text]

Shimozaki SS, Chen KY, Abbey CK, Eckstein MP
The temporal dynamics of selective attention of the visual periphery as measured by classification images.
J Vis. 2007;7(12):10.1-20.
This study estimates the temporal dynamics of selective attention with classification images, a technique assessing observer information use by tracking how responses are correlated with external noise added to the stimulus. Three observers performed a yes/no discrimination of a Gaussian signal that could appear at one of eight locations (eccentricity-4.6 degrees ). During the stimulus duration (300 ms), a peripheral cue indicated the potential signal location with 100% validity, and stimuli were presented in frames (37.5 ms/frame) of independently sampled Gaussian luminance image noise. Stimuli were presented either with or without a succeeding masking display (100 ms) of high-contrast image noise, with mask presence having little effect. The results from the classification images suggest that observers were able to use information at the cued location selectively (relative to the uncued locations), starting within the first (0-37.5 ms) or second (37.5-75 ms) frame. This suggests a selective attention effect earlier than those found in previous behavioral and event-related potential (ERP) studies, which generally have estimated the latency for selective attention effects to be 75-100 ms. We present a deconvolution method using the known temporal impulse response of early vision that indicates how the classification image results might relate to previous behavioral and ERP results. Applying the model to the classification images suggests that accounting for the known temporal dynamics could explain at least part of the difference in results between classification images and the previous studies. [Abstract/Link to Full Text]

Todd JT, Thaler L, Dijkstra TM, Koenderink JJ, Kappers AM
The effects of viewing angle, camera angle, and sign of surface curvature on the perception of three-dimensional shape from texture.
J Vis. 2007;7(12):9.1-16.
Computational models for determining three-dimensional shape from texture based on local foreshortening or gradients of scaling are able to achieve accurate estimates of surface relief from an image when it is observed from the same visual angle with which it was photographed or rendered. These models produce conflicting predictions, however, when an image is viewed from a different visual angle. An experiment was performed to test these predictions, in which observers judged the apparent depth profiles of hyperbolic cylinders under a wide variety of conditions. The results reveal that the apparent patterns of relief from texture are systematically underestimated; convex surfaces appear to have greater depth than concave surfaces, large camera angles produce greater amounts of perceived depth than small camera angles, and the apparent depth-to-width ratio for a given image of a surface is greater for small viewing angles than for large viewing angles. Because these results are incompatible with all existing computational models, a new model is presented based on scaling contrast that can successfully account for all aspects of the data. [Abstract/Link to Full Text]

Serrano-Pedraza I, Goddard P, Derrington AM
Evidence for reciprocal antagonism between motion sensors tuned to coarse and fine features.
J Vis. 2007;7(12):8.1-14.
Early visual processing analyses fine and coarse image features separately. Here we show that motion signals derived from fine and coarse analyses are combined in rather a surprising way: Coarse and fine motion sensors representing the same direction of motion inhibit one another and an imbalance can reverse the motion perceived. Observers judged the direction of motion of patches of filtered two-dimensional noise, centered on 1 and 3 cycles/deg. When both sets of noise were present and only the 3 cycles/deg noise moved, judgments were reversed at short durations. When both sets of noise moved, judgments were correct but sensitivity was impaired. Reversals and impairments occurred both with isotropic noise and with orientation-filtered noise. The reversals and impairments could be simulated in a model of motion sensing by adding a stage in which the outputs of motion sensors tuned to 1 and 3 cycles/deg and the same direction of motion were subtracted from one another. The subtraction model predicted and we confirmed in experiments with orientation-filtered noise that if the 1 cycle/deg noise flickered and the 3 cycles/deg noise moved, the 1 cycle/deg noise appeared to move in the opposite direction to the 3 cycles/deg noise even at long durations. [Abstract/Link to Full Text]

Jazayeri M, Movshon JA
Integration of sensory evidence in motion discrimination.
J Vis. 2007;7(12):7.1-7.
To make perceptual judgments, the brain must decode the responses of sensory cortical neurons. The direction of visual motion is represented by the activity of direction-selective neurons. Because these neurons are often broadly tuned and their responses are inherently variable, the brain must appropriately integrate their responses to infer the direction of motion reliably. The optimal integration strategy is task dependent. For coarse direction discriminations, neurons tuned to the directions of interest provide the most reliable information, but for fine discriminations, neurons with preferred directions displaced away from the target directions are more informative. We measured coarse and fine direction discriminations with random-dot stimuli. Unknown to the observers, we added subthreshold motion signals of different directions to perturb the responses of different groups of direction-selective neurons. The pattern of biases induced by subthreshold signals of different directions indicates that subjects' choice behavior relied on the activity of neurons with a wide range of preferred directions. For coarse discriminations, observers' judgments were most strongly determined by neurons tuned to the target directions, but for fine discriminations, neurons with displaced preferred directions had the largest influence. We conclude that perceptual decisions rely on a population decoding strategy that takes the statistical reliability of sensory responses into account. [Abstract/Link to Full Text]

López-Moliner J, Soto-Faraco S
Vision affects how fast we hear sounds move.
J Vis. 2007;7(12):6.1-7.
There is a growing body of knowledge about the behavioral and neural correlates of cross-modal interactions in the perception of motion direction, as well as about the computations that underlie unimodal visual speed processing. Yet, the multisensory contributions to the perception of motion speed remain largely uncharted. Here we show that visual motion information exerts a profound influence on the perception of auditory speed. Moreover, our results suggest that this influence is specifically caused by visual velocity rather than by earlier, more local, frequency-based components of visual motion. The way in which visual speed information affects how fast we hear a sound move can be well described by a weighted average model that takes into account the visual speed signal in the computation of auditory speed. [Abstract/Link to Full Text]

Szego PA, Rutherford MD
Actual and illusory differences in constant speed influence the perception of animacy similarly.
J Vis. 2007;7(12):5.1-7.
The ability to perceive objects as alive is the first step in social cognition. When the status of an object is ambiguous--if far away or fast moving--animacy is best perceived using motion cues. Previous studies have revealed that acceleration is a robust cue to animacy. The current study tests the prediction that, in the absence of acceleration, an object traveling at a relatively faster constant speed is more likely to be perceived as animate. Experiment 1 confirmed this hypothesis. Experiment 2 investigated the robustness of this finding by employing an illusory speed difference: Participants viewed dots moving at the same speed across apparently smaller and apparently larger central circles that were actually equally sized. Two thirds of participants perceived a dot traveling across an apparently larger circle to be faster or alive. Experiment 3 showed that participants' responses were not due to response bias. Together, these results suggest that our perceptions of animacy are influenced by constant speed differences, and that the perceptual association of speed and animacy is influenced by actual and illusory speed differences similarly. [Abstract/Link to Full Text]

Hiris E
Detection of biological and nonbiological motion.
J Vis. 2007;7(12):4.1-16.
Often it is claimed that humans are particularly sensitive to biological motion. Here, sensitivity as a detection advantage for biological over nonbiological motion is examined. Previous studies comparing biological motion to nonbiological motion have not used appropriate masks or have not taken into account the underlying form present in biological motion. The studies reported here compare the detection of biological motion to nonbiological motion with and without form. Target animation sequences represented a walking human, an unstructured translation and rotation, and a structured translation and rotation. Both the number of mask dots and the size of the target varied across trials. The results show that biological motion is easier to detect than unstructured nonbiological motion but is not easier to detect than structured nonbiological motion. The results cannot be explained by learning over the course of data collection. Additional analyses show that mask density explains masking of different size target areas and is not specific to detection tasks. These data show that humans are not better at detecting biological motion compared to nonbiological motion in a mask. Any differences in detection performance between biological motion and nonbiological motion may be in part because biological motion always contains an underlying form. [Abstract/Link to Full Text]

Wong JH, Peterson MS, Hillstrom AP
Are changes in semantic and structural information sufficient for oculomotor capture?
J Vis. 2007;7(12):3.1-10.
The abrupt onset of objects often involuntarily captures attention (J. Jonides & S. Yantis, 1988) and the eyes (J. Theeuwes, A. F. Kramer, S. Hahn, & D. Irwin, 1998). The new-object hypothesis proposes that the appearance of something new (new semantic and structural information and/or spatiotemporal newness), not the accompanying low-level perceptual transients, causes an involuntary reorienting of attention (S. Yantis & A. P. Hillstrom, 1994). We investigated whether semantic and structural changes alone are sufficient to capture the eyes as strongly as abrupt onsets do. Observers moved their eyes to a target object while another object either onset or smoothly and quickly morphed. If semantic and structural changes are sufficient to capture the eyes, morphs should capture the eyes as strongly as onsets do. Results show that morphs were not fixated first as often as onsets. These findings indicate that new semantic and structural information alone is far less effective at capturing the eyes as onsets. [Abstract/Link to Full Text]

Economou E, Zdravkovic S, Gilchrist A
Anchoring versus spatial filtering accounts of simultaneous lightness contrast.
J Vis. 2007;7(12):2.1-15.
The oldest lightness illusion is called simultaneous contrast. A gray square placed on a black background appears lighter than an identical gray square placed on a white background. For over a hundred years, this illusion has been generally attributed to lateral inhibition or spatial filtering. Receptor cells stimulated by the gray square on the white background are strongly inhibited by nearby cells stimulated by the bright white background. Recently, a new explanation for this illusion was proposed as part of a larger theory of lightness called anchoring theory. The lightness of each target square is computed relative to the highest luminance in its local framework (consisting of only the target and its surrounding background) and relative to the highest luminance in the entire display. For each target, perceived lightness is held to depend on a weighted average of these two computations. According to this story, the contrast illusion stems mostly from the tendency of the gray square on the black background to rise toward white, its computed value in its local framework. We report six experiments in which these two theories of simultaneous contrast are pitted against each other. In each case, the results favor the anchoring model. The difficulty of deriving predictions from the spatial filtering models is discussed, along with the ease of deriving highly specific predictions from the anchoring model. [Abstract/Link to Full Text]

Bex PJ, Langley K
The perception of suprathreshold contrast and fast adaptive filtering.
J Vis. 2007;7(12):1.1-23.
We examine how the perceived contrast of dynamic noise images depends upon temporal frequency (TF) and mean luminance. A novel stepwise suprathreshold matching paradigm shows that both threshold and suprathreshold contrast sensitivity functions may be described by an inverted-U shape as a function of TF. The shape and the peak TF of the tuning function vary with the conditions under which it is measured. Spatiotemporal vision is weakly band-pass at low luminance levels (0.8 cd/m(2)) but becomes more strongly band-pass at high luminances (40-400 cd/m(2)). The peak temporal frequencies of the band-pass functions increase with the mean luminance and contrast of the test signals. As a function of increasing image contrast, our results demonstrate that the visual system broadens the spatiotemporal bandwidth of its signal detection mechanisms, especially at high mean luminances. Our results are shown to be consistent with an adaptable signal transmission system in which early luminance-dependent gain control mechanisms, in combination with on-line estimates of contrast via the autocorrelation function lead to an adaptive enhancement of spatiotemporal vision at high temporal frequencies. [Abstract/Link to Full Text]

Alvarez GA, Franconeri SL
How many objects can you track? Evidence for a resource-limited attentive tracking mechanism.
J Vis. 2007;7(13):14.1-10.
Much of our interaction with the visual world requires us to isolate some currently important objects from other less important objects. This task becomes more difficult when objects move, or when our field of view moves relative to the world, requiring us to track these objects over space and time. Previous experiments have shown that observers can track a maximum of about 4 moving objects. A natural explanation for this capacity limit is that the visual system is architecturally limited to handling a fixed number of objects at once, a so-called magical number 4 on visual attention. In contrast to this view, Experiment 1 shows that tracking capacity is not fixed. At slow speeds it is possible to track up to 8 objects, and yet there are fast speeds at which only a single object can be tracked. Experiment 2 suggests that that the limit on tracking is related to the spatial resolution of attention. These findings suggest that the number of objects that can be tracked is primarily set by a flexibly allocated resource, which has important implications for the mechanisms of object tracking and for the relationship between object tracking and other cognitive processes. [Abstract/Link to Full Text]

Noguchi Y, Shimojo S, Kakigi R, Hoshiyama M
Spatial contexts can inhibit a mislocalization of visual stimuli during smooth pursuit.
J Vis. 2007;7(13):13.1-15.
The position of a flash presented during pursuit is mislocalized in the direction of the pursuit. Although this has been explained by a temporal mismatch between the slow visual processing of flash and fast efferent signals on eye positions, here we show that spatial contexts also play an important role in determining the flash position. We put various continuously lit objects (walls) between veridical and to-be-mislocalized positions of flash. Consequently, these walls significantly reduced the mislocalization of flash, preventing the flash from being mislocalized beyond the wall (Experiment 1). When the wall was shortened or had a hole in its center, the shape of the mislocalized flash was vertically shortened as if cutoff or funneled by the wall (Experiment 2). The wall also induced color interactions; a red wall made a green flash appear yellowish if it was in the path of mislocalization (Experiment 3). Finally, those flash-wall interactions could be induced even when the walls were presented after the disappearance of flash (Experiment 4). These results indicate that various features (position, shape, and color) of flash during pursuit are determined with an integration window that is spatially and temporally broad, providing a new insight for generating mechanisms of eye-movement mislocalizations. [Abstract/Link to Full Text]

Ruppertsberg AI, Bloj M
Reflecting on a room of one reflectance.
J Vis. 2007;7(13):12.1-13.
We present a numerical analysis of rendered pairs of rooms, in which the spectral power distribution of the illuminant in one room matched the surface reflectance function in the other room, and vice versa. We ask whether distinction between the rooms is possible and on what cues this discrimination is based. Using accurately rendered three-dimensional (3D) scenes, we found that room pairs can be distinguished based on indirect illumination, as suggested by A. L. Gilchrist and A. Jacobsen (1984). In a simulated color constancy scenario, we show that indirect illumination plays a pivotal role as areas of indirect illumination undergo a smaller appearance change than areas of direct illumination. Our study confirms that indirect illumination can play a critical role in surface color recovery and shows how computer rendering programs, which model the light-object interaction according to the laws of physics, are valuable tools that can be used to analyze and explore what image information is available to the visual system from 3D scenes. [Abstract/Link to Full Text]

López-Moliner J, Field DT, Wann JP
Interceptive timing: prior knowledge matters.
J Vis. 2007;7(13):11.1-8.
Fast interceptive actions, such as catching a ball, rely upon accurate and precise information from vision. Recent models rely on flexible combinations of visual angle and its rate of expansion of which the tau parameter is a specific case. When an object approaches an observer, however, its trajectory may introduce bias into tau-like parameters that render these computations unacceptable as the sole source of information for actions. Here we show that observer knowledge of object size influences their action timing, and known size combined with image expansion simplifies the computations required to make interceptive actions and provides a route for experience to influence interceptive action. [Abstract/Link to Full Text]

Champion RA, Adams WJ
Modification of the convexity prior but not the light-from-above prior in visual search with shaded objects.
J Vis. 2007;7(13):10.1-10.
Studies of visual search performance with shaded stimuli, in which the target is rotated by 180 degrees relative to the distracters, typically demonstrate more efficient performance in stimuli with vertical compared to horizontal shading gradients. In addition, performance is usually better for vertically shaded stimuli with top-light (seen as convex) distracters compared to those with bottom-light (seen as concave) distracters. These findings have been cited as evidence for the use of the prior assumptions of overhead lighting and convexity in the interpretation of shaded stimuli and suggest that these priors affect preattentive processing. Here we attempt to modify these priors by providing observers with visual-haptic training in an environment inconsistent with their priors. Observers' performance was measured in a visual search task and a shape judgment task before and after training. Following training, we found a reduced asymmetry between visual search performance with convex and concave distracters, suggesting a modification of the convexity prior. However, although evidence of a change in the light-from-above prior was found in the shape judgment task, no change was found in the visual search task. We conclude that experience can modify the convexity prior at a preattentive stage in processing; however, our training did not modify the light-from-above prior that is measured via visual search. [Abstract/Link to Full Text]

May KA, Hess RF
Ladder contours are undetectable in the periphery: a crowding effect?
J Vis. 2007;7(13):9.1-15.
We studied the perceptual integration of contours consisting of Gabor elements positioned along a smooth path, embedded among distractor elements. Contour elements either formed tangents to the path ("snakes") or were perpendicular to it ("ladders"). Perfectly straight snakes and ladders were easily detected in the fovea but, at an eccentricity of 6 degrees , only the snakes were detectable. The disproportionate impairment of peripheral ladder detection remained when we brought foveal performance away from ceiling by jittering the orientations of the elements. We propose that the failure to detect peripheral ladders is a form of crowding, the phenomenon observed when identification of peripherally located letters is disrupted by flanking letters. D. G. Pelli, M. Palomares, and N. J. Majaj (2004) outlined a model in which simple feature detectors are followed by integration fields, which are involved in tasks, such as letter identification, that require the outputs of several detectors. They proposed that crowding occurs because small integration fields are absent from the periphery, leading to inappropriate feature integration by large peripheral integration fields. We argue that the "association field," which has been proposed to mediate contour integration (D. J. Field, A. Hayes, & R. F. Hess, 1993), is a type of integration field. Our data are explained by an elaboration of Pelli et al.'s model, in which weak ladder integration competes with strong snake integration. In the fovea, the association fields were small, and the model integrated snakes and ladders with little interference. In the periphery, the association fields were large, and integration of ladders was severely disrupted by interference from spurious snake contours. In contrast, the model easily detected snake contours in the periphery. In a further demonstration of the possible link between contour integration and crowding, we ran our contour integration model on groups of three-letter stimuli made from short line segments. Our model showed several key properties of crowding: The critical spacing for crowding to occur was independent of the size of the target letter, scaled with eccentricity, and was greater on the peripheral side of the target. [Abstract/Link to Full Text]

Meng M, Ferneyhough E, Tong F
Dynamics of perceptual filling-in of visual phantoms revealed by binocular rivalry.
J Vis. 2007;7(13):8.1-15.
How do selective and constructive visual mechanisms interact to determine the outcome of conscious perception? Binocular rivalry involves selective perception of one of two competing monocular images, whereas visual phantoms involve perceptual filling-in between two low-contrast collinear gratings. Recently, we showed that visual phantoms lead to neural filling-in of activity in V1 and V2, which can be dynamically gated by rivalry suppression (M. Meng, D. A. Remus, & F. Tong, 2005). Here, we used psychophysical methods to study the temporal dynamics of filling-in, by applying rivalry or flash suppression to trigger the suppression or appearance of visual phantoms. Experiments revealed that phantom filling-in involves an active, time-dependent process that depends on the phenomenal visibility of the phantom-inducing gratings. Shortly after the inducing gratings became dominant during rivalry, the likelihood of perceiving phantoms in the intervening gap increased over time, with larger gaps requiring more time for filling-in. In contrast, suppression of the inducing gratings promptly led to the disappearance of visual phantoms, with response times independent of gap size. The fact that binocular rivalry can prevent the formation of visual phantoms rules out the possibility that rivalry suppression occurs after the site of phantom filling-in. This study provides novel evidence that visual phantoms result from a slow time-dependent filling-in mechanism; possible models to account for its time course are discussed. [Abstract/Link to Full Text]

Georgeson MA, May KA, Freeman TC, Hesse GS
From filters to features: scale-space analysis of edge and blur coding in human vision.
J Vis. 2007;7(13):7.1-21.
To make vision possible, the visual nervous system must represent the most informative features in the light pattern captured by the eye. Here we use Gaussian scale-space theory to derive a multiscale model for edge analysis and we test it in perceptual experiments. At all scales there are two stages of spatial filtering. An odd-symmetric, Gaussian first derivative filter provides the input to a Gaussian second derivative filter. Crucially, the output at each stage is half-wave rectified before feeding forward to the next. This creates nonlinear channels selectively responsive to one edge polarity while suppressing spurious or "phantom" edges. The two stages have properties analogous to simple and complex cells in the visual cortex. Edges are found as peaks in a scale-space response map that is the output of the second stage. The position and scale of the peak response identify the location and blur of the edge. The model predicts remarkably accurately our results on human perception of edge location and blur for a wide range of luminance profiles, including the surprising finding that blurred edges look sharper when their length is made shorter. The model enhances our understanding of early vision by integrating computational, physiological, and psychophysical approaches. [Abstract/Link to Full Text]

Fang F, Ijichi K, He S
Transfer of the face viewpoint aftereffect from adaptation to different and inverted faces.
J Vis. 2007;7(13):6.1-9.
The viewpoint aftereffect is a perceptual illusion that, after adapting to an object/face viewed from one side (e.g., 30 degrees to the left of center), when the same object/face is subsequently presented near the front view, the perceived viewing direction is biased in a direction opposite to that of the adapted viewpoint (e.g., 2 degrees to the right). In this study, we measured the face viewpoint aftereffects when the adapting and the testing faces were different in identity and gender and when their vertical orientations were inverted. The aftereffect showed a strong transfer following adaptation to other faces. This effect was slightly attenuated when the adapting and the test face stimuli were made more dissimilar. This suggests the existence of neurons jointly tuned to both face view and structure. However, the transfer from cross adapting to an inverted face was much reduced and weak, indicating that the neural coding of upright and inverted faces in the high-level visual cortex is different and a major part of the face viewpoint coding occurs at the level where faces are holistically represented. [Abstract/Link to Full Text]

Heron J, Whitaker D, McGraw PV, Horoshenkov KV
Adaptation minimizes distance-related audiovisual delays.
J Vis. 2007;7(13):5.1-8.
A controversial hypothesis within the domain of sensory research is that observers are able to use visual and auditory distance cues to maintain perceptual synchrony--despite the differential velocities of light and sound. Here we show that observers are categorically unable to utilize such distance cues. Nevertheless, given a period of adaptation to the naturally occurring audiovisual asynchrony associated with each viewing distance, a temporal recalibration mechanism helps to perceptually compensate for the effects of distance-induced auditory delays. These effects demonstrate a novel functionality of temporal recalibration with clear ecological benefits. [Abstract/Link to Full Text]

Gould IC, Wolfgang BJ, Smith PL
Spatial uncertainty explains exogenous and endogenous attentional cuing effects in visual signal detection.
J Vis. 2007;7(13):4.1-17.
Attentional cues may increase the detectability of a stimulus by increasing its signal-to-noise ratio (signal enhancement) or by increasing the efficiency of the observer's decision making by reducing uncertainty about the location of the stimulus (uncertainty reduction). Although signal enhancement has typically been found in detection tasks only when stimuli are backwardly masked, some recent studies have reported signal enhancement with unmasked stimuli under conditions of spatial uncertainty (E. L. Cameron, J. C. Tai, & M. Carrasco, 2002; M. Carrasco, C. Penpeci-Talgar, & M. Eckstein, 2000). To test whether these increases in sensitivity in unmasked displays were due to signal enhancement or uncertainty reduction, observers judged the orientation of unmasked Gabor patch stimuli in the presence or absence of fiducial markers that indicated their position in the display. Consistent with an uncertainty reduction hypothesis, cues produced large increases in sensitivity when stimuli were not localized perceptually but produced little or no systematic increase when they were localized by fiducial markers. The same general pattern of results was obtained with cues designed to engage the exogenous and endogenous orienting systems. The data suggest that, in practiced observers, the cuing effect for detecting unmasked stimuli is mainly due to uncertainty reduction. [Abstract/Link to Full Text]

Schütz AC, Delipetkos E, Braun DI, Kerzel D, Gegenfurtner KR
Temporal contrast sensitivity during smooth pursuit eye movements.
J Vis. 2007;7(13):3.1-15.
During smooth pursuit eye movements, stimuli other than the pursuit target move across the retina, and this might affect their detectability. We measured detection thresholds for vertically oriented Gabor stimuli with different temporal frequencies (1, 4, 8, 12, 16, 20, and 24 Hz) of the sinusoids. Observers kept fixation on a small target spot that was either stationary or moved horizontally at a speed of 8 deg/s. The sinusoid of the Gabor stimuli moved either in the same or in the opposite direction as the pursuit target. Observers had to indicate whether the Gabor stimuli were displayed 4 degrees above or below the target spot. Results show that contrast sensitivity was mainly determined by retinal-image motion but was slightly reduced during smooth pursuit eye movements. Moreover, sensitivity for motion opposite to pursuit direction was reduced in comparison to motion in pursuit direction. The loss in sensitivity for peripheral targets during pursuit can be interpreted in terms of space-based attention to the pursuit target. The loss of sensitivity for motion opposite to pursuit direction can be interpreted as feature-based attention to the pursuit direction. [Abstract/Link to Full Text]

Nishina S, Seitz AR, Kawato M, Watanabe T
Effect of spatial distance to the task stimulus on task-irrelevant perceptual learning of static Gabors.
J Vis. 2007;7(13):2.1-10.
It was previously shown that sensitivity improvements to a task-irrelevant motion direction can be obtained when it is presented in concurrence with observers' performance of an attended task (A. R. Seitz & T. Watanabe, 2003; T. Watanabe, J. E. Náńez, & Y. Sasaki, 2001). To test whether this task-irrelevant perceptual learning (TIPL) is specific for motion and to clarify the relationships between the observer's task and the resultant TIPL, we investigated the spatial profile of the sensitivity enhancement for a static task-irrelevant feature. During the training period, participants performed an attentionally demanding character identification task at one location, whereas subthreshold, static, Gabor patches, which were masked in noise, were presented at different locations in the visual field. Subjects' sensitivity to the Gabors was compared between the pre- and posttraining tests. First, we found that TIPL extends to learning of static visual stimuli. Thus, TIPL is not a specialized process to motion stimuli. As to the effect of spatial location, the largest improvement was found for the Gabors presented in closest proximity to the task. These data indicate that the learning of the task-irrelevant visual feature significantly depends on the task location, with a gradual attenuation according to the spatial distance between them. These findings give further insights into the mechanism of perceptual learning. [Abstract/Link to Full Text]

Brooks KR, Gillam BJ
Stereomotion perception for a monocularly camouflaged stimulus.
J Vis. 2007;7(13):1.1-14.
Under usual circumstances, motion in depth is associated with conventional stereomotion cues: a change in disparity and differences between object velocities in each monocular image. However, occasionally these cues are unavailable due to the fact that in one eye the object may be occluded by, or camouflaged against appropriately positioned binocular objects. We report two experiments concerned with stereomotion perception under conditions of monocular camouflage. In Experiment 1, the visible half-image of a monocularly camouflaged object translated laterally. In this binocular context, percepts of lateral motion and motion in depth were equally consistent with the stimulus. Subjects perceived an oblique trajectory of 3D motion, compared to the more direct 3D trajectory experienced for binocularly matched stimuli. In Experiment 2, the perceived velocity of stereomotion was assessed. Again, for the stimulus used in Experiment 1, perceived stereomotion speed was lower than that for matched stimuli. However, when additional background objects were present, tightening the ecological constraints, perceived stereomotion velocity was often equivalent to that for matched stimuli. These results demonstrate for the first time that the motion of a monocularly camouflaged object can result in the perception of stereomotion, and that the perceived trajectory and speed are influenced by the ecological constraints of binocular geometry. [Abstract/Link to Full Text]

Fujimoto K, Yagi A
Backscroll illusion in far peripheral vision.
J Vis. 2007;7(8):16.
The backscroll illusion refers to the apparent motion perceived in the background of a movie image that presents a locomotive object such as a person, an animal, or a vehicle. Here, we report that the backscroll illusion can occur in far peripheral visual fields at retinal eccentricity of more than 30 degrees. In psychological experiments, we presented a walking person in profile against an ambiguously moving background of vertical counterphase grating. This stimulus, which subtended 30 degrees of visual angle in width and height, was projected onto a hemispheric screen and positioned at horizontal eccentricity between 0 degrees and 50 degrees at intervals of 10 degrees. The eccentricity was changed randomly trial by trial, and stimulus duration was as short as 350 ms so that observers could not effectively move their eyes to the stimulus. Six observers viewed the stimulus either monocularly or binocularly and reported their perceptual impression for the grating in a three-alternative forced-choice procedure: drifting left, drifting right, or flickering. Results showed that the grating appeared to move in the opposite direction of walking at high probabilities even in the far periphery. Additional experiments confirmed that walking action could be recognized from the far peripheral stimulation. Our findings suggest that the visual system uses high-level object-centered motion signals to disambiguate retinal motion signals in the whole visual field. [Abstract/Link to Full Text]

Cohen AL, Shiffrin RM, Gold JM, Ross DA, Ross MG
Inducing features from visual noise.
J Vis. 2007;7(8):15.
We present new experimental and mathematical techniques aimed at determining the features used in visual object recognition. We conceive of these features as the parts of an object that are treated as unitary wholes when recognizing or discriminating visual objects. For example, consider a task classifying a visual target presented in pixel noise as a "P" or a "Q". The features may correspond to particular shapes of the target letters. Two such features for "P", for example, might be a vertical line and upper-right-facing curve. The decision may be encoded in terms of particular values of such features, and an appropriate combination of these values may determine how the expression is perceived. We utilize recent advances in statistical machine learning techniques to uncover the features used by human observers. [Abstract/Link to Full Text]

Rossi EA, Weiser P, Tarrant J, Roorda A
Visual performance in emmetropia and low myopia after correction of high-order aberrations.
J Vis. 2007;7(8):14.
Myopic observers may not benefit to the same extent as emmetropes from adaptive optics (AO) correction in a visual acuity (VA) task. To investigate this, we measured AO-corrected VA in 10 low myopes and 9 emmetropes. Subjects were grouped by refractive error. Mean spherical equivalent refractive error was -2.73 D (SEM = 0.35) for the myopes and 0.04 D (SEM = 0.1) for the emmetropes. All subjects had best corrected VA of 20/20 or better. The AO scanning laser ophthalmoscope was used to project ultrasharp stimuli onto the retina of each observer. High-contrast photopic acuity was measured using a tumbling E test with and without AO correction. AO-corrected minimum angle of resolution was 0.61' (SEM = 0.02') for the myopes and 0.49' (SEM = 0.03') for the emmetropes. The difference between groups is significant (p = .0017). This effect is even greater (p = .00013) when accounting for spectacle magnification and axial length, with myopes and emmetropes able to resolve critical features on the retina with a mean size of 2.87 mum (SEM = 0.07) and 2.25 mum (SEM = 0.1), respectively. Emmetropes and low myopes will both benefit from AO correction in a VA task but not to the same extent. Optical aberrations do not limit VA in low myopia after AO correction. There is no difference in the high-order aberrations of emmetropes and low myopes. Retinal and/or cortical factors limit VA in low myopes after AO correction. [Abstract/Link to Full Text]

Knill DC
Learning Bayesian priors for depth perception.
J Vis. 2007;7(8):13.
How the visual system learns the statistical regularities (e.g., symmetry) needed to interpret pictorial cues to depth is one of the outstanding questions in perceptual science. We test the hypothesis that the visual system can adapt its model of the statistics of planar figures for estimating three-dimensional surface orientation. In particular, we test whether subjects, when placed in an environment containing a large proportion of randomly shaped ellipses, learn to give less weight to a prior bias to interpret ellipses as slanted circles when making slant judgments of stereoscopically viewed ellipses. In a first experiment, subjects placed a cylinder onto a stereoscopically viewed, slanted, elliptical surface. In this experiment, subjects received full haptic feedback about the true orientation of the surface at the end of the movement. When test stimuli containing small conflicts between the circle interpretation as figure and the slant suggested by stereoscopic disparities were intermixed with stereoscopically viewed circles, subjects gave the same weight to the circle interpretation over the course of five daily sessions. When the same test stimuli were intermixed with stereoscopic views of randomly shaped ellipses, however, subjects gave progressively lower weights to the circle interpretation of test stimuli over five daily sessions. In a second experiment, subjects showed the same effect when they made perceptual judgments of slant without receiving feedback, showing that feedback is not required for learning. We describe a Bayesian model for combining multiple visual cues to adapt the priors underlying pictorial depth cues that qualitatively accounts for the observed behavior. [Abstract/Link to Full Text]