GRK3 and bipolar disorder


Attention Valued Visitor: A Drug Reference Page for FDA Approved General Anesthetics is now available!
Shawn Thomas ( is working to summarize the mechanisms of action of every drug approved by the FDA for a brain- related condition. In addition, new pages with more automated content will soon replace some of the older pages on the web site. If you have suggestions about content that you would like to see, e-mail if you have anything at all to share.



(Updated 1/12/04)

Barrett TB, Hauger RL, Kennedy JL, Sadovnick AD, Remick RA, Keck PE, McElroy SL, Alexander M, Shaw SH, Kelsoe JR.
Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder.
Mol Psychiatry. 2003 May;8(5):546-57.
"In a genome-wide linkage survey, we have previously shown evidence suggesting that the chromosome 22q12 region contains a susceptibility locus for bipolar disorder (BPD). Two independent family sets yielded lod scores suggestive of linkage at markers in this region near the gene G protein receptor kinase 3 (GRK3). GRK3 is an excellent candidate risk gene for BPD since GRK3 is expressed widely in the brain, and since GRKs play key roles in the homologous desensitization of G protein-coupled receptor signaling. We have also previously shown GRK3 expression to be induced by amphetamine in an animal model of mania using microarray-based expression profiling. To identify possible functional mutations in GRK3, we sequenced the putative promoter region, all 21 exons, and intronic sequence flanking each exon, in 14-22 individuals with BPD. We found six sequence variants in the 5'-UTR/promoter region, but no coding or obvious splice variants. Transmission disequilibrium analyses of one set of 153 families indicated that two of the 5'-UTR/promoter variants are associated with BPD in families of northern European Caucasian ancestry. A supportive trend towards association to one of these two variants (P-5) was then subsequently obtained in an independent sample of 237 families. In the combined sample, the P-5 variant had an estimated allele frequency of 3% in bipolar subjects, and displayed a transmission to non-transmission ratio of 26 : 7.7 (chi(2)=9.6, one-sided P value=0.0019). Altogether, these data support the hypothesis that a dysregulation in GRK3 expression alters signaling desensitization, and thereby predisposes to the development of BPD." [Abstract]

Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach
Physiol. Genomics 4: 83-91, 2000.
"We have used methamphetamine treatment of rats as an animal model for psychotic mania. Specific brain regions were analyzed comprehensively for changes in gene expression using oligonucleotide GeneChip microarrays. The data was cross-matched against human genomic loci associated with either bipolar disorder or schizophrenia. Using this convergent approach, we have identified several novel candidate genes (e.g., signal transduction molecules, transcription factors, metabolic enzymes) that may be involved in the pathogenesis of mood disorders and psychosis. Furthermore, for one of these genes, G protein-coupled receptor kinase 3 (GRK3), we found by Western blot analysis evidence for decreased protein levels in a subset of patient lymphoblastoid cell lines that correlated with disease severity. Finally, the classification of these candidate genes into two prototypical categories, psychogenes and psychosis-suppressor genes, is described.
G protein-coupled receptor kinase 3. G protein-coupled receptor kinase 3 (GRK3) mediates homologous desensitization for a variety of neurotransmitters by phosphorylation of G protein-coupled receptors (GPCRs). GRK3 maps to human chromosome 22q11. This region had been previously implicated in bipolar disorder by our group (32, 38) and others (11, 15). In fact, 22q yielded the highest LOD scores of any chromosomal region in our genome survey (results to be reported separately). Consistent with many findings in this field, this linkage peak was broad and spanned nearly 20 cM. One of the highest LOD scores in this region was 2.2 at D22S419, which maps to within 40 kb of GRK3. This marker is also quite close to the markers identified in the two other independent positive linkage reports for 22q in bipolar disorder. A marker within the GRK3 gene, D22S315, has also been implicated in a study of eye tracking and evoked potential abnormalities in schizophrenia (44).
The known physiological role of GRK3, described in more detail below, suggests the hypothesis that a defect in its function could lead to supersensitivity to dopamine or a defect in the homeostatic adaptation to dopamine, which in turn could predispose to illness." [Full Text]

Potash JB, Zandi PP, Willour VL, Lan TH, Huo Y, Avramopoulos D, Shugart YY, MacKinnon DF, Simpson SG, McMahon FJ, DePaulo JR Jr, McInnis MG.
Suggestive linkage to chromosomal regions 13q31 and 22q12 in families with psychotic bipolar disorder.
Am J Psychiatry 2003 Apr;160(4):680-6
"OBJECTIVE: Linkage studies of bipolar disorder and schizophrenia have found overlapping evidence for susceptibility genes in four chromosomal regions-10p12-14, 13q32, 18p11.2, and 22q12-13. The authors previously demonstrated familial clustering of psychotic symptoms-defined as hallucinations and/or delusions-in some bipolar disorder pedigrees. In this study they used stratified linkage analysis to test the hypothesis that those bipolar disorder pedigrees most enriched for psychotic symptoms would show greater evidence of linkage to the regions of previous bipolar disorder/schizophrenia linkage overlap. METHOD: Nonparametric linkage analyses using GENEHUNTER and ASPEX were performed on 65 bipolar disorder families. Family subsets were defined by the number of family members with psychotic mood disorder. RESULTS: The 10 families in which three or more members had psychotic mood disorder showed suggestive evidence of linkage to 13q31 (nonparametric linkage score=3.56; LOD score=2.52) and 22q12 (nonparametric linkage score=3.32; LOD score=3.06). These results differed significantly from those for the entire study group of 65 families, which showed little or no linkage evidence in the two regions. The 10 families with three or more psychotic members did not show evidence of linkage to 10p12-14 or 18p11.2. The 95% confidence interval on 22q12 spanned 4.3 centimorgans (2.6 megabases) and was congruent with previous findings. CONCLUSIONS: Bipolar disorder families in which psychotic symptoms cluster may carry susceptibility genes on chromosomal regions 13q31 and 22q12. Replication should be attempted in similar families and perhaps in schizophrenia families in which mood symptoms cluster because these overlapping phenotypes may correlate most closely with the putative susceptibility genes. The localization of the 22q12 finding particularly encourages further study of this region." [Abstract]

Shubhik K. DebBurman, Judy Ptasienski, Evan Boetticher, Jon W. Lomasney, Jeffrey L. Benovic, and M. Marlene Hosey
Lipid-mediated Regulation of G Protein-coupled Receptor Kinases 2 and 3
J. Biol. Chem. 270: 5742-5747, 1995.
"G protein-coupled receptor-mediated signaling is attenuated by a process referred to as desensitization, wherein agonist-dependent phosphorylation of receptors by G protein-coupled receptor kinases (GRKs) is proposed to be a key initial event. However, mechanisms that activate GRKs are not fully understood. In one scenario, beta gamma-subunits of G proteins (G beta gamma) activate certain GRKs (beta-adrenergic receptor kinases 1 and 2, or GRK2 and GRK3), via a pleckstrin homology domain in the COOH terminus. This interaction has been proposed to translocate cytosolic beta-adrenergic receptor kinases (beta ARKs) to the plasma membrane and facilitate interaction with receptor substrates. Here, we report a novel finding that membrane lipids modulate beta ARK activity in vitro in a manner that is analogous and competitive with G beta gamma. Several lipids, including phosphatidylserine (PS), stimulated, whereas phosphatidylinositol 4,5-bisphosphate inhibited, the ability of these GRKs to phosphorylate agonist-occupied m2 muscarinic acetylcholine receptors. Furthermore, both PS and phosphatidylinositol 4,5-bisphosphate specifically bound to beta ARK1, whereas phosphatidylcholine, a lipid that did not modulate beta ARK activity, did not bind to beta ARK1. The lipid regulation of beta ARKs did not occur via a modulation of its autophosphorylation state. PS- and G beta gamma-mediated stimulation of beta ARK1 was compared and found strikingly similar; moreover, their effects together were not additive (except at initial stages of reaction), which suggests that PS and G beta gamma employed a common interaction and activation mechanism with the kinase. The effects of these lipids were prevented by two well known G beta gamma-binding proteins, phosducin and GST-beta ARK-(466-689) fusion protein, suggesting that the G beta gamma-binding domain (possibly the pleckstrin homology domain) of the GRKs is also a site for lipid:protein interaction. We submit the intriguing possibility that both lipids and G proteins co-regulate the function of GRKs." [Full Text]

James J. Onorato, Mary E. Gillis, Yu Liu, Jeffrey L. Benovic, and Arnold E. Ruoho
The beta-Adrenergic Receptor Kinase (GRK2) Is Regulated by Phospholipids
J. Biol. Chem. 270: 21346-21353, 1995.
"The beta-adrenergic receptor kinase (beta ARK) is a member of growing family of G protein coupled receptor kinases (GRKs). beta ARK and other members of the GRK family play a role in the mechanism of agonist-specific desensitization by virtue of their ability to phosphorylate G protein-coupled receptors in an agonist-dependent manner. beta ARK activation is known to occur following the interaction of the kinase with the agonist-occupied form of the receptor substrate and heterotrimeric G protein beta gamma subunits. Recently, lipid regulation of GRK2, GRK3, and GRK5 have also been described. Using a mixed micelle assay, GRK2 (beta ARK1) was found to require phospholipid in order to phosphorylate the beta 2-adrenergic receptor. As determined with a nonreceptor peptide substrate of beta ARK, catalytic activity of the kinase increased in the presence of phospholipid without a change in the Km for the peptide. Data obtained with the heterobifunctional cross-linking agent N-3-[125I]iodo-4-azidophenylpropionamido-S-(2-thiopyridyl)-c ysteine ([125I]ACTP) suggests that the activation by phospholipid was associated with a conformational change in the kinase. [125I]ACTP incorporation increased 2-fold in the presence of crude phosphatidylcholine, and this increase in [125I]ACTP labeling is completely blocked by the addition of MgATP. Furthermore, proteolytic mapping was consistent with the modification of a distinct site when GRK2 was labeled in the presence of phospholipid. While an acidic phospholipid specificity was demonstrated using the mixed micelle phosphorylation assay, a notable exception was observed with PIP2. In the presence of PIP2, kinase activity as well as [125I]ACTP labeling was inhibited. These data demonstrate the direct regulation of GRK2 activity by phospholipids and supports the hypothesis that this effect is the result of a conformational change within the kinase." [Full Text]

On site link: PIP2 and lithium

Christopher V. Carman, Jean-Luc Parent, Peter W. Day, Alexey N. Pronin, Pamela M. Sternweis, Philip B. Wedegaertner, Alfred G. Gilman, Jeffrey L. Benovic, and Tohru Kozasa
Selective Regulation of Gq/11 by an RGS Domain in the G Protein-coupled Receptor Kinase, GRK2
J. Biol. Chem. 274: 34483-34492, 1999.
"G protein-coupled receptor kinases (GRKs) are well characterized regulators of G protein-coupled receptors, whereas regulators of G protein signaling (RGS) proteins directly control the activity of G protein alpha subunits. Interestingly, a recent report (Siderovski, D. P., Hessel, A., Chung, S., Mak, T. W., and Tyers, M. (1996) Curr. Biol. 6, 211-212) identified a region within the N terminus of GRKs that contained homology to RGS domains. Given that RGS domains demonstrate AlF(4)(-)-dependent binding to G protein alpha subunits, we tested the ability of G proteins from a crude bovine brain extract to bind to GRK affinity columns in the absence or presence of AlF(4)(-). This revealed the specific ability of bovine brain Galpha(q/11) to bind to both GRK2 and GRK3 in an AlF(4)(-)-dependent manner. In contrast, Galpha(s), Galpha(i), and Galpha(12/13) did not bind to GRK2 or GRK3 despite their presence in the extract. Additional studies revealed that bovine brain Galpha(q/11) could also bind to an N-terminal construct of GRK2, while no binding of Galpha(q/11), Galpha(s), Galpha(i), or Galpha(12/13) to comparable constructs of GRK5 or GRK6 was observed. Experiments using purified Galpha(q) revealed significant binding of both Galpha(q) GDP/AlF(4)(-) and Galpha(q)(GTPgammaS), but not Galpha(q)(GDP), to GRK2. Activation-dependent binding was also observed in both COS-1 and HEK293 cells as GRK2 significantly co-immunoprecipitated constitutively active Galpha(q)(R183C) but not wild type Galpha(q). In vitro analysis revealed that GRK2 possesses weak GAP activity toward Galpha(q) that is dependent on the presence of a G protein-coupled receptor. However, GRK2 effectively inhibited Galpha(q)-mediated activation of phospholipase C-beta both in vitro and in cells, possibly through sequestration of activated Galpha(q). These data suggest that a subfamily of the GRKs may be bifunctional regulators of G protein-coupled receptor signaling operating directly on both receptors and G proteins." [Full Text]

Willets, Jonathon M., Challiss, R. A. John, Kelly, Eamonn, Nahorski, Stefan R.
G Protein-Coupled Receptor Kinases 3 and 6 Use Different Pathways to Desensitize the Endogenous M3 Muscarinic Acetylcholine Receptor in Human SH-SY5Y Cells
Mol Pharmacol 2001 60: 321-330
"We have investigated the effects of G protein-coupled receptor kinase (GRK) 3 and GRK6 on the phosphorylation and regulation of the M3 muscarinic acetylcholine receptor (mACh) endogenously expressed in SH-SY5Y cells. Overexpression of GRK3 or GRK6 enhanced M3 mACh receptor phosphorylation after high-concentration methacholine (100 microM, 1 min) addition. However, GRK6 was more potent, increasing receptor phosphorylation even after low (3 microM, 1 min) agonist stimulation. Compared with plasmid-transfected control cells expressing equivalent M3 mACh receptor number, GRK3- or GRK6-overexpressing cells exhibited a reduced phospholipase C activity reflected by a lower accumulation of total [3H]inositol phosphates and Ins(1,4,5)P3 mass. In addition, direct stimulation of G protein activation of phospholipase C (by AlF4(-)) was inhibited in GRK3- but not GRK6-overexpressing cells. Guanosine-5'-O-(3-[35S]thio)triphosphate binding and immunoprecipitation of Galpha(q/11) indicated that acute methacholine-stimulated receptor/Galpha(q/11) coupling was unaffected by GRK overexpression. In contrast, agonist pretreatment of cells for 3 min caused M3 mACh receptor uncoupling from Galpha(q/11), which was markedly enhanced by GRK6 overexpression, particularly at lower agonist pretreatment concentrations. However, the increased M3 mACh receptor phosphorylation seen in clones overexpressing GRK3 was not accompanied by increased receptor-Galpha(q/11) uncoupling. Overall, these data suggest that GRK3 and GRK6 use different pathways to desensitize the M3 mACh receptor. GRK6 seems to act as a classical GRK, inducing increased receptor phosphorylation accompanied by an uncoupling of receptor and Galpha(q/11). Conversely, GRK3 may cause desensitization independently of receptor phosphorylation, possibly via Gbetagamma binding and/or direct Galpha(q) binding via its regulator of G protein signaling domain to inhibit phospholipase C activity." [Full Text]

Yehia Daaka, Julie A. Pitcher, Mark Richardson, Robert H. Stoffel, Janet D. Robishaw, and Robert J. Lefkowitz
Receptor and G betagamma isoform-specific interactions with G protein-coupled receptor kinases
PNAS 94: 2180-2185, 1997.
"The G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate and desensitize agonist-occupied GPCRs. GRK2-mediated receptor phosphorylation is preceded by the agonist-dependent membrane association of this enzyme. Previous in vitro studies with purified proteins have suggested that this translocation may be mediated by the recruitment of GRK2 to the plasma membrane by its interaction with the free betagamma subunits of heterotrimeric G proteins (G betagamma). Here we demonstrate that this mechanism operates in intact cells and that specificity is imparted by the selective interaction of discrete pools of G betagamma with receptors and GRKs. Treatment of Cos-7 cells transiently overexpressing GRK2 with a beta-receptor agonist promotes a 3-fold increase in plasma membrane-associated GRK2. This translocation of GRK2 is inhibited by the carboxyl terminus of GRK2, a known G betagamma sequestrant. Furthermore, in cells overexpressing both GRK2 and G beta1 gamma2, activation of lysophosphatidic acid receptors leads to the rapid and transient formation of a GRK/G betagamma complex. That G betagamma specificity exists at the level of the GPCR and the GRK is indicated by the observation that a GRK2/G betagamma complex is formed after agonist occupancy of the lysophosphatidic acid and beta-adrenergic but not thrombin receptors. In contrast to GRK2, GRK3 forms a G betagamma complex after stimulation of all three GPCRs. This G betagamma binding specificity of the GRKs is also reflected at the level of the purified proteins. Thus the GRK2 carboxyl terminus binds G beta1 and G beta2 but not G beta3, while the GRK3 fusion protein binds all three G beta isoforms. This study provides a direct demonstration of a role for G betagamma in mediating the agonist-stimulated translocation of GRK2 and GRK3 in an intact cellular system and demonstrates isoform specificity in the interaction of these components." [Full Text]

Tsu Tshen Chuang, Lina Paolucci, and Antonio De Blasi
Inhibition of G Protein-coupled Receptor Kinase Subtypes by Ca2+/Calmodulin
J. Biol. Chem. 271: 28691-28696, 1996.
"G protein-coupled receptor kinases (GRKs) are implicated in the homologous desensitization of G protein-coupled receptors. Six GRK subtypes have so far been identified, named GRK1 to GRK6. The functional state of the GRKs can be actively regulated in different ways. In particular, it was found that retinal rhodopsin kinase (GRK1), but not the ubiquitous betaARK1 (GRK2), can be inhibited by the photoreceptor-specific Ca2+-binding protein recoverin through direct binding. The present study was aimed to investigate regulation of other GRKs by alternative Ca2+-binding proteins such as calmodulin (CaM). We found that Gbetagamma-activated GRK2 and GRK3 were inhibited by CaM to similar extents (IC50 approximately 2 microM), while a 50-fold more potent inhibitory effect was observed on GRK5 (IC50 = 40 nM). Inhibition by CaM was strictly dependent on Ca2+ and was prevented by the CaM inhibitor CaMBd. Since Gbetagamma, which is a binding target of Ca2+/CaM, is critical for the activation of GRK2 and GRK3, it provides a possible site of interaction between these proteins. However, since GRK5 is Gbetagamma-independent, an alternative mechanism is conceivable. A direct interaction between GRK5 and Ca2+/CaM was revealed using CaM-conjugated Sepharose 4B. This binding does not influence the catalytic activity as demonstrated using the soluble GRK substrate casein. Instead, Ca2+/CaM significantly reduced GRK5 binding to the membrane. The mechanism of GRK5 inhibition appeared to be through direct binding to Ca2+/CaM, resulting in inhibition of membrane association and hence receptor phosphorylation. The present study provides the first evidence for a regulatory effect of Ca2+/CaM on some GRK subtypes, thus expanding the range of different mechanisms regulating the functional states of these kinases." [Full Text]

Erdtmann-Vourliotis M, Mayer P, Ammon S, Riechert U, Hollt V.
Distribution of G-protein-coupled receptor kinase (GRK) isoforms 2, 3, 5 and 6 mRNA in the rat brain.
Brain Res Mol Brain Res. 2001 Nov 1;95(1-2):129-37.
"There is limited knowledge about the distribution of the different G-protein-coupled receptor kinases (GRKs) in the rat brain, especially for the recently cloned isoforms GRK5 and GRK6. In this work an overview will be given of the mRNA expression patterns of four G-protein-coupled receptor kinases, GRK2 (betaARK1), GRK3 (betaARK2), GRK5 and GRK6 in the rat brain. As now shown by us and recently by others GRK2 and GRK3 are widely distributed in rat brain with nearly the same expression pattern. But GRK3, in general, appeared to be weaker expressed than GRK2 in most brain areas. Exceptions were the islands of Calleja, the compact part of the substantia nigra and the locus coeruleus. GRK3 mRNA was very low expressed or absent in the striatum and in some hypothalamic and thalamic nuclei. The expression pattern of GRK6 was also similar to GRK2. In the caudate putamen GRK6 yielded the strongest hybridization signal of all GRK types. GRK5 took a special position. The message for this form was not expressed ubiquitously in the brain but was mainly localized in limbic brain regions with a very prominent expression in the lateral septal area. GRK5 may therefore be involved in reward and addiction. Accordingly, a higher expression level of GRK5 mRNA was found in the lateral septum of cocaine-sensitized rats as compared to controls." [Abstract]

Frank M. Dautzenberg, Sandra Braun, and Richard L. Hauger
GRK3 mediates desensitization of CRF1 receptors: a potential mechanism regulating stress adaptation
Am J Physiol Regul Integr Comp Physiol 280: R935-R946, 2001.
"Potential G protein-coupled receptor kinase (GRK) and protein kinase A (PKA) mediation of homologous desensitization of corticotropin-releasing factor type 1 (CRF1) receptors was investigated in human retinoblastoma Y-79 cells. Inhibition of PKA activity by PKI(5-22) or H-89 failed to attenuate homologous desensitization of CRF1 receptors, and direct activation of PKA by forskolin or dibutyryl cAMP failed to desensitize CRF-induced cAMP accumulation. However, treatment of permeabilized Y-79 cells with heparin, a nonselective GRK inhibitor, reduced homologous desensitization of CRF1 receptors by approximately 35%. Furthermore, Y-79 cell uptake of a GRK3 antisense oligonucleotide (ODN), but not of a random or mismatched ODN, reduced GRK3 mRNA expression by approximately 50% without altering GRK2 mRNA expression and inhibited homologous desensitization of CRF1 receptors by approximately 55%. Finally, Y-79 cells transfected with a GRK3 antisense cDNA construct exhibited an approximately 50% reduction in GRK3 protein expression and an ~65% reduction in homologous desensitization of CRF1 receptors. We conclude that GRK3 contributes importantly to the homologous desensitization of CRF1 receptors in Y-79 cells, a brain-derived cell line." [Full Text]

Dautzenberg FM, Wille S, Braun S, Hauger RL.
GRK3 regulation during CRF- and urocortin-induced CRF1 receptor desensitization.
Biochem Biophys Res Commun. 2002 Nov 1;298(3):303-8.
"The EC(50) values for concentration-dependent stimulation of cAMP accumulation by CRF (1.3nM) and urocortin (1.0nM) were equivalent in human retinoblastoma Y79 cells. The time course and magnitude of CRF- and urocortin-induced CRF(1) receptor desensitization were similar. A significant 3-fold increase in GRK3, but not GRK2, mRNA levels accompanied the emergence of CRF(1) receptor desensitization in Y79 cells exposed to CRF. In preliminary experiments, retinoblastoma GRK3 protein expression became upregulated during a 48-h CRF exposure. Neither GRK3 nor GRK2 expression increased in Y79 cells exposed to urocortin for 10 min to 48 h. We hypothesize that GRK3 upregulation may be a cellular negative feedback process directed at maximizing CRF(1) receptor desensitization by heightening GRK3 phosphorylating capacity during prolonged exposure to high CRF. Regulation of GRK expression associated with urocortin- and CRF-induced CRF(1) receptor desensitization appears to differ, despite a similar level of signaling via the cAMP-protein kinase A pathway." [Abstract]

Bawa T, Altememi GF, Eikenburg DC, Standifer KM.
Desensitization of alpha(2A)-adrenoceptor signalling by modest levels of adrenaline is facilitated by beta(2)-adrenoceptor-dependent GRK3 up-regulation.
Br J Pharmacol. 2003 Mar;138(5):921-31.
"1 Adrenaline (ADR) and noradrenaline (NA) can simultaneously activate inhibitory alpha(2)- and stimulatory beta-adrenoceptors (AR). However, ADR and NA differ significantly in that ADR is a potent beta(2)-AR agonist while NA is not. Only recently has the interaction resulting from the simultaneous activation of alpha(2)- and beta(2)-AR been examined at the cellular level to determine the mechanisms of alpha(2)-AR regulation following concomitant activation of both alpha(2)- and beta(2)-ARs by chronic ADR. 2 This study evaluates beta(2)-AR regulation of alpha(2A)-AR signalling following chronic ADR (300 nM) and NA (1 and 30 micro M) treatments of BE(2)-C human neuroblastoma cells that natively express both beta(2)- and alpha(2A)-ARs. 3 Chronic (24 h) treatment with ADR (300 nM) desensitized the response to the alpha(2A)-AR agonist, brimonidine, in BE(2)-C cells. Addition of the beta-AR antagonist, propranolol, blocked the ADR-induced alpha(2A)-AR desensitization. Unlike ADR, chronic NA (1 micro M) treatment had no effect on the alpha(2A)-AR response. However if NA was increased to 30 micro M for 24 h, alpha(2A)-AR desensitization was observed; this desensitization was partially reversed by propranolol. 4 Chronic ADR (300 nM) treatment reduced alpha(2A)-AR binding levels, contributing to the alpha(2A)-AR desensitization. This decrease was prevented by addition of propranolol during ADR treatment. Chronic NA (30 micro M), like ADR, treatment lowered specific binding, whereas 1 micro M NA treatment was without effect. 5 Chronic ADR treatment produced a significant increase in GRK3 levels and this was blocked by propranolol or GRK2/3 antisense DNA treatment. This antisense DNA, common to both GRK2 and GRK3, also blocked chronic ADR-induced alpha(2A)-AR desensitization and down-regulation. 6 Acute (1 h) ADR (300 nM) or NA treatment (1 micro M) produced alpha(2A)-AR desensitization. The desensitization produced by acute treatment was beta-AR independent, as it was not blocked by propranolol. 7 We conclude that chronic treatment with modest levels of ADR produces alpha(2A)-AR desensitization by mechanisms that involve up-regulation of GRK3 and down-regulation of alpha(2A)-AR levels through interactions with the beta(2)-AR." [Abstract]

Diviani D, Lattion AL, Larbi N, Kunapuli P, Pronin A, Benovic JL, Cotecchia S.
Effect of different G protein-coupled receptor kinases on phosphorylation and desensitization of the alpha1B-adrenergic receptor.
J Biol Chem. 1996 Mar 1;271(9):5049-58.
"The alpha1B-adrenergic receptor (alpha1BAR), its truncated mutant T368, different G protein-coupled receptor kinases (GRK) and arrestin proteins were transiently expressed in COS-7 or HEK293 cells alone and/or in various combinations. Coexpression of beta-adrenergic receptor kinase (betaARK) 1 (GRK2) or 2 (GRK3) could increase epinephrine-induced phosphorylation of the wild type alpha1BAR above basal as compared to that of the receptor expressed alone. On the other hand, overexpression of the dominant negative betaARK (K220R) mutant impaired agonist-induced phosphorylation of the receptor. Overexpression of GRK6 could also increase epinephrine-induced phosphorylation of the receptor, whereas GRK5 enhanced basal but not agonist-induced phosphorylation of the alpha1BAR. Increasing coexpression of betaARK1 or betaARK2 resulted in the progressive attenuation of the alpha1BAR-mediated response on polyphosphoinositide (PI) hydrolysis. However, coexpression of betaARK1 or 2 at low levels did not significantly impair the PI response mediated by the truncated alpha1BAR mutant T368, lacking the C terminus, which is involved in agonist-induced desensitization and phosphorylation of the receptor. Similar attenuation of the receptor-mediated PI response was also observed for the wild type alpha1BAR, but not for its truncated mutant, when the receptor was coexpressed with beta-arrestin 1 or beta-arrestin 2. Despite their pronounced effect on phosphorylation of the alpha1BAR, overexpression of GRK5 or GRK6 did not affect the receptor-mediated response. In conclusion, our results provide the first evidence that betaARK1 and 2 as well as arrestin proteins might be involved in agonist-induced regulation of the alpha1BAR. They also identify the alpha1BAR as a potential phosphorylation substrate of GRK5 and GRK6. However, the physiological implications of GRK5- and GRK6-mediated phosphorylation of the alpha1BAR remain to be elucidated." [Full Text]

Mario Tiberi, S. Russel Nash, Lucie Bertrand, Robert J. Lefkowitz, and Marc G. Caron
Differential Regulation of Dopamine D1A Receptor Responsiveness by Various G Protein-coupled Receptor Kinases
J. Biol. Chem. 271: 3771-3778, 1996.
"The role of G protein-coupled receptor kinases (GRKs) in the regulation of dopamine D1A receptor responsiveness is poorly understood. To explore the potential role played by the GRKs in the regulation of the rat dopamine D1A receptor, we performed whole cell phosphorylation experiments and cAMP assays in 293 cells cotransfected with the receptor alone or with various GRKs (GRK2, GRK3, and GRK5). The agonist-dependent phosphorylation of the rat D1A receptor was substantially increased in cells overexpressing GRK2, GRK3, or GRK5. Moreover, we report that cAMP formation upon receptor activation was differentially regulated in cells overexpressing either GRK2, GRK3, and GRK5 under conditions that elicited similar levels of GRK-mediated receptor phosphorylation. Cells expressing the rat D1A receptor with GRK2 and GRK3 displayed a rightward shift of the dopamine dose-response curve with little effect on the maximal activation when compared with cells expressing the receptor alone. In contrast, cells expressing GRK5 displayed a rightward shift in the EC50 value with an additional 40% reduction in the maximal activation when compared with cells expressing the receptor alone. Thus, we show that the dopamine D1A receptor can serve as a substrate for various GRKs and that GRK-phosphorylated D1A receptors display a differential reduction of functional coupling to adenylyl cyclase. These results suggest that the cellular complement of G protein-coupled receptor kinases may determine the properties and extent of agonist-mediated responsiveness and desensitization." [Full Text]

Janet D. Lowe, Jeremy P. Celver, Vsevolod V. Gurevich, and Charles Chavkin
mu-Opioid Receptors Desensitize Less Rapidly than delta-Opioid Receptors Due to Less Efficient Activation of Arrestin
J. Biol. Chem. 277: 15729-15735.
"Receptor desensitization by G-protein receptor kinases (GRK) and arrestins is likely to be an important component underlying the development of tolerance to opioid drugs. Reconstitution of this process in Xenopus oocytes revealed distinct differences in the kinetics of GRK and arrestin regulation of the closely related opioid receptors mu (MOR), delta (DOR), and kappa (KOR). We demonstrated that under identical conditions, GRK and arrestin-dependent desensitization of MOR proceeds dramatically slower than that of DOR. Furthermore, GRK3 phosphorylation sites required for opioid receptor desensitization also greatly differ. The determinants for DOR and KOR desensitization reside in the carboxyl-terminal tail, whereas MOR depends on Thr-180 in the second intracellular loop. Although this later finding might indicate an inefficient phosphorylation of MOR Thr-180, increasing the amount of arrestin expressed greatly increased the rate of MOR desensitization to a rate comparable with that of DOR. Similarly, coexpression of a constitutively active arrestin 2(R169E) with MOR and DOR desensitized both receptors in an agonist-dependent, GRK-independent manner at rates that were indistinguishable. Together, these data suggest that it is the activation of arrestin, rather than its binding, that is the rate-limiting step in MOR desensitization. In addition, mutation of Thr-161 in DOR, homologous to MOR Thr-180, significantly inhibited the faster desensitization of DOR. These results suggest that DOR desensitization involves phosphorylation of both the carboxyl-terminal tail and the second intracellular loop that together leads to a more efficient activation of arrestin and thus faster desensitization." [Full Text]

Kovoor, Abraham, Celver, Jeremy P., Wu, Albert, Chavkin, Charles
Agonist Induced Homologous Desensitization of µ-Opioid Receptors Mediated by G Protein-Coupled Receptor Kinases Is Dependent on Agonist Efficacy
Mol Pharmacol 1998 54: 704-711
"Using Xenopus laevis oocytes coexpressing mammalian mu-opioid receptors (MORs), beta-adrenergic receptor kinase 2 (beta-ARK2) [also called G protein-coupled receptor kinase (GRK3)], and beta-arrestin 2 (beta-arr 2), we compared the rates of beta-ARK2 (GRK3)- and beta-arr 2-mediated homologous receptor desensitization produced by treatment with opioid agonists of different efficacies. The response to MOR activation was measured using two-electrode voltage clamp as an increase in the conductance of the coexpressed G protein-coupled inwardly rectifying potassium (heteromultimer of KIR3.1 and KIR3.4) channels. Treatment with opioids of high efficacy, either [D-Ala2,N-MePhe4,Gly-ol5]-enkephalin, fentanyl, or sufentanyl, produced a GRK3- and beta-arr 2-dependent reduction in response in <20 min, whereas treatment with the partial agonist morphine produced receptor desensitization at a significantly slower rate. Because GRK3 requires activation and membrane targeting by free G protein betagamma subunits released after agonist-mediated activation of G proteins, a low efficacy agonist such as morphine may produce weak receptor desensitization as a consequence of poor GRK3 activation. To address this hypothesis, we substituted GRK5, a GRK that does not require activation by G protein betagamma. In oocytes expressing GRK5 instead of GRK3, both [D-Ala2,N-MePhe4, Gly-ol5]enkephalin and fentanyl, but not morphine, produced desensitization of MOR-activated potassium conductance. Thus, mu-opioid agonists produced significant receptor desensitization, mediated by either GRK3 or GRK5, at a rate dependent on agonist efficacy." [Full Text]

Jin, Wenzhen, Brown, Sean, Roche, John P., Hsieh, Candace, Celver, Jeremy P., Kovoor, Abraham, Chavkin, Charles, Mackie, Ken
Distinct Domains of the CB1 Cannabinoid Receptor Mediate Desensitization and Internalization
J. Neurosci. 1999 19: 3773-3780
"Desensitization of cannabinoid receptor signaling by a G-protein coupled receptor kinase (GRK) was examined using the Xenopus oocyte expression system. Application of a CB1 agonist, WIN 55,212-2, evoked a concentration-dependent increase in K+ conductance (Kir3) in oocytes coexpressing rat CB1 with the G-protein-gated, inwardly rectifying K+ channels Kir3.1 and Kir3.4. Desensitization was slight during continuous agonist application in the absence of GRK and arrestin. However, coexpression of GRK3 and beta-arrestin 2 (beta-arr2) caused profound homologous CB1 receptor desensitization, supporting the hypothesis that GRK3 and beta-arr2 effectively produce CB1 receptor desensitization. To identify the regions of the CB1 receptor responsible for GRK3- and beta-arr2-mediated desensitization, we constructed several CB1 receptor mutants. Truncation of the C-terminal tail of CB1 receptor at residue 418 (Delta418) almost completely abolished desensitization but did not affect agonist activation of Kir3. In contrast, truncation at residues 439 and 460 did not significantly affect GRK3- and beta-arr2-dependent desensitization. A deletion mutant (Delta418-439) did not desensitize, indicating that residues within this region are important for GRK3- and beta-arr2-mediated desensitization. Phosphorylation in this region was likely involved in desensitization, because mutation of either of two putative phosphorylation sites (S426A or S430A) significantly attenuated desensitization. CB1 receptors rapidly internalize after activation by agonist. Phosphorylation of S426 or S430 was not necessary for internalization, because the S426A/S430A CB1 mutant internalized when stably expressed in AtT20 cells. These studies establish that CB1 desensitization can be regulated by a GRK and that different receptor domains are involved in GRK- and beta-arrestin-dependent desensitization and CB1 internalization." [Full Text]



->Back to Home<- //->Back to Bipolar Disorder Index<-

Recent Bipolar Disorder & GRK3 Research

1) Luykx JJ, Boks MP, Terwindt AP, Bakker S, Kahn RS, Ophoff RA
The involvement of GSK3beta in bipolar disorder: integrating evidence from multiple types of genetic studies.
Eur Neuropsychopharmacol. 2010 Jun;20(6):357-68.
We aimed to get a comprehensive insight into the genetic evidence supporting the role of GSK3beta in bipolar disorder (BD). Using broad searches in NCBI's PubMed and the Genetic Association Database we looked for association, whole-genome linkage, genome-wide association, gene expression, pharmocogenomic, epigenetic, cytogenetic, and mouse model studies performed for BD until July 2009. Per gene, we rated the degree of converging evidence across these types of genetic studies. The genes most consistently associated with BD in the genetic studies we reviewed were GSK3beta , GRK3, 5-HTTLPR, GRIN3, COMT, and GLUR3. GSK3beta stood out as it was implicated in at least five types of genetic studies. Although our results are limited by design differences of included studies and possibly by publication bias, GSK3beta is a plausible candidate gene for BD from a pharmacological and a genetic perspective. Future studies investigating the effects of GSK3beta manipulation in BD seem warranted. [PubMed Citation] [Order full text from Infotrieve]

2) McCarthy MJ, Barrett TB, Nissen S, Kelsoe JR, Turner EE
Allele specific analysis of the ADRBK2 gene in lymphoblastoid cells from bipolar disorder patients.
J Psychiatr Res. 2010 Mar;44(4):201-8.
G-protein coupled receptor kinase-3 (GRK3), translated from the gene, ADRBK2 has been implicated as a candidate molecule for bipolar disorder through multiple, converging lines of evidence. In some individuals, the ADRBK2 gene harbors the A-haplotype, a collection of single nucleotide polymorphisms (SNPs) previously associated with an increased risk for bipolar disorder. Because the A-haplotype encompasses the ADRBK2 promoter, we hypothesized that it may alter the regulation of gene expression. Using histone H3 acetylation to infer promoter activity in lymphoblastoid cells from patients with bipolar disorder, we examined the A-haplotype within its genomic context and determined that at least four of its SNPs are present in transcriptionally active portions of the promoter. However, using chromatin immunoprecipitation followed by allele-specific PCR in samples heterozygous for the A-haplotype, we found no evidence of altered levels of acetylated histone H3 at the affected allele compared to the common allele. Similarly, using a transcribed SNP to discriminate expressed ADRBK2 mRNA strands by allele of origin; we found that the A-haplotype did not confer an allelic-expression imbalance. Our data suggest that while the A-haplotype is situated in active regulatory sequence, the risk-associated SNPs do not appear to affect ADRBK2 gene regulation at the level of histone H3 acetylation nor do they confer measurable changes in transcription in lymphoblastoid cells. However, tissue-specific mechanisms by which the A-haplotype could affect ADRBK2 in the central nervous system cannot be excluded. [PubMed Citation] [Order full text from Infotrieve]

3) Rao JS, Rapoport SI, Kim HW
Decreased GRK3 but not GRK2 expression in frontal cortex from bipolar disorder patients.
Int J Neuropsychopharmacol. 2009 Jul;12(6):851-60.
Overactivation of G-protein-mediated functions and altered G-protein regulation have been reported in bipolar disorder (BD) brain. Further, drugs effective in treating BD are reported to up-regulate expression of G-protein receptor kinase (GRK) 3 in rat frontal cortex. We therefore hypothesized that some G-protein subunits and GRK levels would be reduced in the brain of BD patients. We determined protein and mRNA levels of G-protein beta and gamma subunits, GRK2, and GRK3 in post-mortem frontal cortex from 10 BD patients and 10 age-matched controls by using immunoblots and real-time RT-PCR. There were statistically significant decreases in protein and mRNA levels of G-protein subunits beta and gamma and of GRK3 in BD brain but not a significant difference in the GRK2 level. Decreased expression of G-protein subunits and of GRK3 may alter neurotransmission, leading to disturbed cognition and behaviour in BD. [PubMed Citation] [Order full text from Infotrieve]

4) Zhou X, Barrett TB, Kelsoe JR
Promoter variant in the GRK3 gene associated with bipolar disorder alters gene expression.
Biol Psychiatry. 2008 Jul 15;64(2):104-10.
[PubMed Citation] [Order full text from Infotrieve]

5) Barrett TB, Emberton JE, Nievergelt CM, Liang SG, Hauger RL, Eskin E, Schork NJ, Kelsoe JR
Further evidence for association of GRK3 to bipolar disorder suggests a second disease mutation.
Psychiatr Genet. 2007 Dec;17(6):315-22.
[PubMed Citation] [Order full text from Infotrieve]

6) Prata DP, Breen G, Munro J, Sinclair M, Osborne S, Li T, Kerwin R, St Clair D, Collier DA
Bipolar 1 disorder is not associated with the RGS4, PRODH, COMT and GRK3 genes.
Psychiatr Genet. 2006 Dec;16(6):229-30.
Although current psychiatric nosology separates bipolar disorder and schizophrenia into non-overlapping categories, there is growing evidence of a partial aetiological overlap between them from linkage, genetic epidemiology and molecular genetics studies. Thus, it is important to determine whether genes implicated in the aetiology of schizophrenia play a role in bipolar disorder, and vice versa. In this study we investigated a total of 15 single nucleotide polymorphisms (SNPs), and all possible haplotypes, of genes that have been previously implicated in schizophrenia or bipolar disorder - RGS4, PRODH, COMT and GRK3 - in a sample of 213 cases with bipolar affective disorder type 1 and 197 controls from Scotland. We analysed the polymorphisms allele-wise, genotype-wise and, for each gene, haplotype-wise but obtained no result that reached nominal significance (p<0.05) for an association with the disease status. In conclusion, we could not find evidence of association between RGS4, PRODH, COMT and GRK3 genes and bipolar affective disorder 1 in the Scottish population. [PubMed Citation] [Order full text from Infotrieve]

7) Ertley RN, Bazinet RP, Lee HJ, Rapoport SI, Rao JS
Chronic treatment with mood stabilizers increases membrane GRK3 in rat frontal cortex.
Biol Psychiatry. 2007 Jan 15;61(2):246-9.
[PubMed Citation] [Order full text from Infotrieve]

8) Shaltiel G, Shamir A, Levi I, Bersudsky Y, Agam G
Lymphocyte G-protein receptor kinase (GRK)3 mRNA levels in bipolar disorder.
Int J Neuropsychopharmacol. 2006 Dec;9(6):761-6.
Linkage studies in bipolar disorder were positive for markers in the region of chromosome 22q12.1 including the gene coding for G-protein receptor kinase (GRK)3. Two of six variants of the GRK3 5'-UTR/promoter were reported to be associated with bipolar disorder. GRK3 protein levels in lymphoblastoid cell lines derived from bipolar patients originating from families with linkage to chromosome 22q11 were reported to be decreased compared to those of control subjects and correlated with disease severity. We compared GRK3 mRNA levels in fresh lymphocytes from 31 bipolar patients vs. 26 control subjects, using real-time RT-PCR. No overall difference was found between patients and controls. However, GRK3 mRNA levels were markedly and significantly reduced in the subgroup of patients with no family history of a major psychiatric disorder compared with patients with family history. [PubMed Citation] [Order full text from Infotrieve]

9) Kato T, Kuratomi G, Kato N
Genetics of bipolar disorder.
Drugs Today (Barc). 2005 May;41(5):335-44.
Many linkage loci and candidate genes have been reported in molecular genetic studies of bipolar disorder. However, none of these findings have been consistently replicated. Meta-analyses of linkage studies have also reported conflicting results. Among recently reported candidate genes, BDNF, G72, AKT1, GRIN2A, XBP1, GRK3, HTR4, IMPA2 and GABRA1 may have some importance. Study of the possible roles of epigenetics or analysis of genetic diseases, in which bipolar disorder is one of phenotypes, may also be promising. In addition to monoaminergic and intracellular signaling pathways, recent studies have revealed possible roles for mitochondrial dysfunction, for glutamatergic dysfunction and for the endoplasmic reticulum stress pathway. [PubMed Citation] [Order full text from Infotrieve]